„RÁBESZÉLŐGÉPEK” A SZERVEZETBEN: A HUMÁN ÉS A
SZÁMÍTÓGÉPES ÁGENSEK JAVASLATAINAK OPERATÍV
DÖNTÉSHOZÓKRA GYAKOROLT HATÁSAI A LEZÁRÁS IRÁNTI
IGÉNY SZINTJÉNEK FÜGGVÉNYÉBEN

DOKTORI (PH.D.) ÉRTEKEZÉS

TÉMAVEZETŐ:
DR. RÉVÉSZ GYÖRGY

PÉCS, 2015
TARTALOMJEGYZÉK
Köszönetnyilvánítás .. 7
Bevezetés.. 8
1. A szervezeti döntések alapfogalmai .. 11
 1.1. A szervezet meghatározása .. 11
 1.2. A döntéselmélet tárgya .. 11
 1.3. A döntés és a szervezet fogalmi összefonódásai .. 12
 1.4. A problémamegoldás és a döntés kapcsolata .. 12
 1.5. A bizonytalanság és kockázat .. 15
 1.6. A probléma komplexitása és struktúrája ... 19
 1.6.1 Jól strukturált problémák .. 20
 1.6.2. Félig strukturált problémák ... 20
 1.6.3. Nem strukturált problémák ... 21
 1.7. Az idő .. 23
Összefoglalás .. 25
2. Prekoncepciók az emberi gondolkodásról .. 26
 2.1. Filozófiatörténeti előzmények ... 26
 2.2. A klasszikus és neoklasszikus közgazdaságtan antropológiai felfogása 28
 2.3. Racionalitás a társadalomtudományokban .. 29
 2.4. A racionalitás fogalmi pontosítása .. 31
 2.4.1. Cél- és értékracionalitás ... 32
 2.4.2. A racionalitás normatív megközelítései .. 33
 2.4.2.1. A bizonytalan helyzetekhez köthető döntési modellek 35
 2.4.2.2. A kockázati helyzetekhez köthető eljárások ... 36
 2.4.2.3. A szubjektív várható hasznosság (SEU) elmélete ... 37
 2.5. A racionalitás kritikái ... 38
 2.5.1. A korlátozott racionalitás elmélete ... 38
2.5.1.1. Az alternatívák feltárásának nehézsége.. 39
2.5.1.2. A bizonytalanság és kockázat problémája ... 40
2.5.1.3. A preferencia-sorrendek összefethetetlensége.. 40
2.5.2. Az Allais-paradoxon és a kilátásmélet .. 41

Összefoglalás... 44

3. A döntéshozatal befolyásoló pszichológiai tényezők ... 45
3.1. Az emberi információfeldolgozás kognitív modelljei.. 45
3.1.1. Ellis és Hunt információfeldolgozási modellje .. 46
3.1.2. Wickens információfeldolgozási modellje.. 48
3.1.3. Rasmussen információfeldolgozási modellje... 49
3.1.4. A tudás és a szakértelem szerepe az információfeldolgozásban................... 50
3.2. Az emberi információfeldolgozás torzításai .. 53
3.2.1. A heurisztikák ... 54
3.2.1.1. A keretezési hatás .. 56
3.2.1.2. A birtokhatás és a mentális könyvelés .. 56
3.2.1.3. A nonkomplementaritási hatás .. 57
3.2.1.4. A Dunning-Kruger hatás ... 57
3.3. A döntéshozatal szociálpszichológiai aspektusai ... 58
3.3.1. Az egyén és a csoport .. 61
3.3.1.1. A csoport fogalma ... 61
3.3.1.2. A munkacsoportok jellemzői ... 62
3.3.1.3. A csoporttagság feltételei és következményei a döntéshozatalban.......... 63
3.3.1.4. Tekintélyelvűség és dogmatizmus ... 66
3.4. Kognitív szociálpszichológia 2.0 ... 69
3.4.1. A nyílt és zárt gondolkodás döntésméleti jelentősége.................................. 70
3.4.2. A lezárás iránti igény hatása az információfeldolgozásra és a személyészelekésre 71

Összefoglalás... 73
4. Számítógépes döntéstámogatás a szervezetekben ... 74

4.1. A döntéstámogató rendszerek meghatározásai ... 74

4.2. A döntéstámogató rendszerekhez kapcsolódó pszichológiai kérdések 79

4.2.1. A teljesítmény kérdése ... 79

4.2.2. Az elfogadás kérdése .. 81

4.2.3. Az oktatás szerepe az elfogadásban .. 85

Összefoglalás ... 86

5. Kutatási kérdések és hipotézisek ... 87

5.1. Kérdésfelvetések .. 87

5.2. Hipotézisek ... 87

1/a. hipotézis .. 88

1/b. hipotézis .. 88

2. hipotézis .. 89

3. hipotézis .. 89

6. Módszer ... 91

6.1. A vizsgálat helyszíne .. 91

6.2. A döntéstámogató rendszer bemutatása ... 92

6.2. Vizsgálati személyek .. 94

6.3. A kutatásban használt mérőeszközök ... 94

6.3.1. A szakértőkre vonatkozó attitűdök adatfelvételi eszköze 94

6.3.2. A Lezárási Igény Kérdőív ... 95

6.3.3. Technológia Elfogadás Kérdőív (TAM) 96

6.3.4. A döntési feladat kidolgozásának háttere 96

6.4. A vizsgálat menete ... 98

7. Eredmények ... 107

7.1. A szakértők iránti attitűd és a lezárás iránti igény kapcsolata 107

7.2. A technológia elfogadás és a lezárás iránti igény kapcsolata 108
7.2.1. A TAM kérdőív elemzése ... 108
7.2.2. A TAM és a lezárás iránti igény kapcsolata.. 109
7.3. A szakértők iránti attitűd, a technológia elfogadás és a lezárás iránti igény
összefüggései.. 110
7.4. A lezárás iránti igény, a döntéstámogatás és a döntéshozatal kapcsolata 111
8. Megbeszélés .. 114
 8.1. Kutatási kérdések és hipotézisek... 114
 8.2. Kitekintés .. 118
Felhasznált irodalom ... 120
Mellékletek (kutatási kérdőívek) .. 136
ÁBRAJEGYZÉK
1. ábra: Bartee-féle problémátér ... 14
2. ábra: A nyílt és zárt problémák tulajdonságai .. 22
3. ábra: Broadbent információfeldolgozási modellje .. 46
4. ábra: Ellis és Hunt információfeldolgozási modellje (1983) 47
5. ábra: Wickens információfeldolgozási modellje .. 48
6. ábra: Rasmussen információfeldolgozási modellje ... 49
7. ábra: A szakmai szintek jellemzői ... 52
8. ábra: A heurisztikák leggyakoribb típusai ... 55
9. ábra: A csoportgondolkodás jellemzői .. 64
10. ábra: A DTR-ek fejlődése ... 75
11. ábra: A DTR-ek és a problémák struktúrái .. 77
12. ábra: Az Anthony-piramis ... 78
13. ábra: A Technológia Elfogadás Modellje .. 81
14. ábra: A Technológia Elfogadás Modelljének módosított változata (TAM 2) 82
15. ábra: A Technológia Elfogadás Modelljének módosított változata (TAM 3) 83
16. ábra: A PAJZS döntéstámogató rendszer adatbázisának illusztrációja 93
17. ábra: A kísérleti helyzetek elrendezése .. 99
18. ábra: A szakértők iránti attitűd és a lezárás iránti igény kapcsolata 107
19. ábra: A TAM és a lezárás iránti igény kapcsolata .. 110
20. ábra: A javaslatok módosításának mértéke a lezárás iránti igény függvényében (A) 112
21. ábra: A javaslatok módosításának mértéke a lezárás iránti igény függvényében (B) 113
KÖSZÖNETNYILVÁNÍTÁS

E helyen kívánom megköszönni témavezetőm, Dr. Révész György részére, hogy biztatásával átsegített a nehéz pillanatokon, és ilyen módon elkészültetett a disszertáció.

Ugyancsak hálám fejezem ki Velősy Anita, a doktori iskola titkárságvezetőjének azért a sok hasznos tanácsért és munkáért, amellyel az elmúlt évek során mindvégig támogatott.

Köszönetem tolmácsolom a doktori iskola vezetőinek, akik közvetve és közvetlenül értékes segítséget nyújtottak számonak tanulmányaim és főképpen a fokozatszerzési eljárás alatt.

Hálával tartozom Dr. Zoltayné Dr. Paprika Zita tanárnőnek, hiszen oktatói tevékenységével felébresztette a döntésemélet hallatlanul ízgalmas területére irányuló érdeklődésem.

Köszönet jár közvetlen kollégáimnak, akik visszajelzéseiakkal és remek meglátásaikkal segítették a kutatás megtervezését, valamint tűzoltó bajtársainak, akik gyakran szabadidejük terhére is hajlandóak voltak kitölteni kérdőíveim.

És végül, de nem utolsó sorban köszönöm családomnak és barátaimnak, hogy elviselték mindazt a terhet, amely a dolgozat megírásával járt.
BEVEZETÉS

A vállalati információs rendszerek ma már a modern szervezetek nélkülözhetetlen komponenseinek számítanak. Napjaink információtechnológiai forradalmának eredményeként ráadásul a számítógépes programok a szervezeti működés olyan szegmenseiben is egyre nagyobb teret hódítanak, ahol néhány évvel ezelőtt még atipikusnak számítottak. Ilyen területnek tekinthető többek között a döntéstámogatás is. Noha szervezeti keretek között már az 1970-es évektől találhatunk példákat a számítógépes döntéstámogatás alkalmazására, ezek a projektek a maguk idejében leginkább kuriózumnak számítottak, mivel a korszak technikai színvonalának korlátai mellett a bevezetés és üzemeltetés magas költségei is gátolták a rendszerek széles körű elterjedését. Az IT szektor dinamikus fejlődésének köszönhetően azonban ezek az akadályok egyre inkább háttérbe szorultak, ezért ma már a számítógépes döntéstámogató rendszerek éppen úgy megtalálhatók az üzleti életben, az orvosi diagnosztikában és a légi közlekedésben, mint a nukleáris erőművekben és a hadászatban (Munier, 2011). Ahogyan ebből a közel sem teljes listából kitűnhet, a szervezeti működés igen széles spektrumában jelentkezhet igény a döntéstámogató alkalmazások iránt, bár a felsorolásból kétségtelenül kiemelkednek azok a szervezetek, amelyek esetében a teljesítmény egyik legfontosabb fokmérője a biztonságkritikus működés.

Már itt érdemes tisztáznunk, hogy az intelligens döntéstámogató rendszerek több szempontból is rendhagyónak tekinthetőek a hagyományos alkalmazásokhoz képest. Egyrészt az ember-gép interakció klasszikus sémájától eltérően a felhasználó bizonyos értelemben kikerül megszokott domináns szerepből, mivel aktív döntéstámogató rendszerekknél nem az ember ad utasításokat a programnak valamilyen művelet végrehajtására, hanem mindez fordítva történik: a számítógép „mondja meg”, mit kell(ene) tennie a felhasználónak. Másrészt ezeket a célszoftvereket nem egzakt, ún. jól definiált és zárt típusú problémák megoldására alkotják, hanem egy meghatározott szakterület félleg struktúrált és többnyire nyitott típusú problémáira hozzák létre, ahol gyakran a megoldási alternatívák helyessége a probléma felmerülésének pillanatában nem ellenőrizhető. Amíg például egy számológép által elvégzett négyzetgyök vonás eredményét a legtöbb ember sosem kérdjelezné meg, addig egy döntéstámogató rendszer esetében az adott probléma megoldására irányuló javaslat közül sem ennyire megbízható és stabil lábakon áll. Mindez bevezeti a harmadik nehézséget, a felelősség kérdését. Ugyanis a döntést minden esetben az ember, nem pedig a gép hozza, ebből adódóan a döntéstámogató rendszerek etikai és jogi szempontok alapján sohasem vonhatók felelősségre, szemben a felhasználóval. Arról sem szabad megfeledkeznünk, hogy amint fentebb már utaltunk is rá, az ilyen típusú rendszereket gyakran vészhelyzeti döntéshozatal esetében használják, ahol nincs idő a probléma alapos és hosszas analízisére. A fentieket végiggondolva egyáltalán nem csodálkozhatunk azon, hogy noha „a számítógépes rendszerek pontossága magasan meghaladja az emberi munkavégzés pontosságát” (Juhász, 2011:12), számos előnyük ellenére az új fejlesztésű döntéstámogató rendszerek sikeres bevezetésének aránya a szervezetekben meglehetősen alacsony, a legoptimistább becslések szerint is csupán 20-30% körül lehet.

Mivel a probléma meglehetősen komplex jellegű, emiatt az elméleti áttekintés során beszélünk kell a döntésemélet legfontosabb alapfogalmairól; az emberi gondolkodás és információfeldolgozás sajátosságairól és korlátairól; a társas kapcsolatok döntéshozatalra gyakorolt hatásairól; a döntéstámogató rendszerek alapvető működéséről és típusairól, illetve e rendszerek szervezeti jelentőségéről. A témakör kiterjesztése és interdiszciplináris jellege miatt arra törekedtekünk, hogy a különböző tudományterületek kutatási eredményeiből a legfontosabb és releváns vizsgálatokat bemutassuk.
Az első fejezetben nem csupán a szervezet, a döntés és a problémamegoldás alapfogalmait fogjuk körüljára, hanem arra is kitérünk majd, hogy ezek milyen módon függenek össze egymással. Arról is szólt fogunk ejteni, hogy a szervezeti döntések esetében milyen jelentőséggel bír többek között például a bizonytalanság és a kockázat, a problémák komplexitása, vagy az idő.

A második fejezetben a racionalitáshoz kapcsolódó társadalomtudományi megközelítéseket tekintjük át annak érdekében, hogy árnyaltabb képet kaphassunk az emberi döntésekre vonatkozó különböző prekoncepciókról. Felvázoljuk a racionális alapú antropológiai és episztemológiai nézőpontok hatásait, illetve bemutatjuk azokat az irányzatokat, amelyek megkérdőjelezik az ember teljes körű racionalitásának axiómáját.

A harmadik fejezetben a humán információfeldolgozás kognitív és szociálpszichológiai aspektusaival foglalkozunk. Néhány modell segítségével szemléltetjük, hogy a döntéshozatal mikként kapcsolódik a problémamegoldáshoz és az információfeldolgozáshoz, valamint kitérünk a társas környezet ítéletalkotási folyamatra gyakorolt hatásaira is.

A negyedik fejezet a döntéstámogató rendszerek ismertetését célozza meg. Az előzményekre építve bemutatjuk azokat az alapkoncepciókat, amelyek a számítógépes döntéstámogatás szervezeti alkalmazása mellett szólnak, valamint áttekintjük azokat a pszichológiai problémákat is, amelyek e rendszerek első megjelenésétől fogva a napjainkig velünk élnek.

A disszertáció második felében megfogalmazzuk kutatási kérdéseinket, illetve ezek alapján felállítjuk hipotéziseinket. Ezeket végül összevetjük a korábban általunk elvégzett vizsgálatok empirikus adatáival annak érdekében, hogy levonhassuk konklúzióinkat.
1. A SZERVEZETI DÖNTÉSEK ALAPFOGALMAI

1.1. A szervezet meghatározása

Ahogy ebből a néhány példából láthatjuk, a meghatározások egyik állandó eleme a cél, amely Perrow (1994) szerint a legtöbb szervezetdefinícióban központi elemnek tekinthető. Noha a szervezeti célok többnyire világosan megfogalmazhatók, a hozzájuk vezető eljárások sokszor nem egyértelműnek. A szervezetben meghozott döntések éppen a célok és a cselekvési alternatívák közé vernek hidat, ebből adódóan kiemelt jelentőséggel bírnak. A múlt század második harmadától kezdődően napjainkig számos szakember érdeklődése a szervezeti döntésekkel kapcsolatos problémák felé fordult. Ily módon született meg a modern döntéselmélet, amelynek releváns fogalmait a következőkben mutatjuk be.

1.2. A döntéselmélet tárgya

Mivel a valóságban nem áll rendelkezésre végzetlen mennyiségű alapanyag, idő, energia, pénz, humán tőke és tudás – mint ahogy nem áll rendelkezésre végzetlen mennyiségű lehetőség sem ezek tetszőleges kombinálására a szervezeti siker megvalósítása érdekében –, így a szervezeti döntések tanulmányozása tulajdonképpen egy olyan közgazdaságtani alapon visszavezethető szükséglet kielégítéseként is felfogható, amely napjainkra már elválaszthatatlanná vált a szervezeti hatékonyság problémakörétől. A döntéselmélet
megszületésének hátterében tehát meglehetősen pragmatikus jellegű kérdéseket találunk, amelyek hatáthatós megoldásához több tudományterület integrálására volt szükség. A döntésmélet az emberi ítéletalkotás teoretikus és módszertani kérdéseivel foglalkozó interdisziplináris tudományok metszete, amely zászlója alatt egyesíti többek között a közgazdaságtant, a szociológiaát, a politológiaát és jogtudományt, a matematikát, a statisztikát, a filozófiát és végül, de nem utolsó sorban a pszichológiaát (Zoltayné, 2005). 1 A disszertáció irányultsága miatt a következőkben főként az emberi döntések pszichológiai aspektusaira fogunk koncentrálni, hiszen – mint majd látni fogjuk – az ítéletalkotási folyamat számos olyan szubjektív tényezőtől függ, amelyek elemzésére leginkább a lélektan szolgáltat hatékony eszközeit. Mielőtt azonban bemutatnánk a pszichológia releváns eredményeit, célzva néhány döntésméleti alapfogalmat tisztáznunk annak érdekében, hogy megfelelő értelmezési alapot építsünk a továbblépéshoz.

1.3. A döntés és a szervezet fogalmi összefonódásai

1.4. A problémamegoldás és a döntés kapcsolata

A szakirodalomban eltérő vélemények lehetők fel azzal kapcsolatban, hogy a döntéshozatal és a problémamegoldás milyen relációban áll egymással. Míg például Adair (2008) javaslata szerint a döntéshozatal, a problémamegoldást és a kreatív gondolkodást külön kell választani egymástól, mint az alkalmazott gondolkodás három nagy független területét, addig többen

1 Természetesen vannak más jellegű definíciók és felosztások is. Pataki (2001) szerint például a döntésmélet a döntésmódszertannal együtt a döntéstan része, azonban kiemeli, hogy a döntésmélet és a döntésmódszertan oly mértékben egymásba ívvidik, hogy a között húzódó határvonalat szinte lehetetlen megrajzolni. Mivel az elmúlt másfél évtizedben a magyar nyelvű tudományos munkákban nem a döntéstan, hanem jobbára a döntésmélet kifejezés terjedt el, mint a tudományterület átfogó megnevezése, ezért a továbbiakban mi is ezt fogjuk használni.

úgy gondolják, a döntéshozatal a tágabb értelemben vett problémamegoldás halmazába tartozik (pl. Pataki, 2001; Zoltayné, 2005; Sántáné et al., 2007; stb.), vagyis „a döntés a rendszereszmítéletű problémamegoldás része” (Fehér, 2005:492). A dolgozatban az utóbbi álláspontot fogadjuk el³, ilyen módon pedig a problémamegoldás területén elért kutatási eredmények a legtöbb esetben alkalmazhatók a különböző döntési helyzetek elemzésére is.

Mint mondottuk, a döntés alapvetően a célok elérésére irányuló folyamat, amely ezen a ponton átfedésben áll a problémamegoldáshoz kapcsolható meghatározásokkal. A problémamegoldás ugyanis általános értelemben felfogható egy olyan aktusként, amelynek képzeletbeli kiinduló pontja az ún. problémaállapot, végpontja pedig az egyén által kijelölt célállapot (Bartee, 1973). Anderson (1990) ennek kapcsán kiemeli, hogy a problémamegoldás során a nagyobb célt részcélokra kell bontanunk, mivel a legtöbb esetben nem rendelkezünk kész eszközökkel a célállapot elérésére. Az egyének esetenként új stratégiákat kell kidolgoznia, esetenként pedig a már adott alternatívák közül kell választania a célállapothoz való eljutás érdekében. A problémamegoldásban kiemelkedő szerep jut az egyén szubjektív szempontjainak is, amelyek nem kizárólag a probléma megoldásának módozatait határozhatják meg, hanem már arra is kihathatnak, hogy az egyén egyáltalán mit érzékel problémaként.

Ezek a közelítési módok nyilvánvalóan párhuzamba állíthatók a szervezet és a döntéshozatal korábban már idézett fogalmi konstrukcióival. Bartee (1973) nem csupán a fogalmakat tisztázta, hanem a problémamegoldás során egymással kapcsolatba kerülő főbb komponenseket kerethe foglalta, amit egy rendszereszmítéletű problématérben ábrázolt. A modell három fő dimenzióját a problémamegoldás módja, a problémamegoldás folyamata és a problématípusok alkotják.

³ Ennek oka, hogy amit majd a későbbiekben látni is fogjuk, a döntés és a problémamegoldás definíciói jelentős átfedést mutatnak.
Munkánk szempontjából a fentebb felvázolt Bartee-féle problématér nem kizárólag a problémamegoldás rövid elméleti áttekintése miatt érdemel figyelmet, hanem egyben tervrajzként is szolgál a dolgozat tartalmi felépítését illetően. Mint láthatjuk, a vízszintes tengely taglalja az egyéni, a csoportos és a szervezeti problémamegoldás módozatait, a függőleges tengely a konceptuális és viselkedési problémátípusokat, míg a harmadik tengelyen elhelyezkedő problémamegoldás folyamata a döntések megértéséhez, elemzéséhez és keretbe foglalásához nyújt segítséget. Úgy is fogalmazhatnánk, hogy a szervezeti döntések pszichológiai analízisénél nyilvánvalóan beszélnünk kell az egyéni és a csoportdöntések közötti különbségekről, azokról a prekoncepciókról és elméletekről, amelyek a döntéshozók viselkedését normatív vagy deskriptív eszközökkel megpróbálják előre jelezni, és e folyamatot a döntéshozók felismeréseitől az ítéletalkotási folyamat lezárásáig végig is kell vezetnünk. Ezek a szempontok fajsúlyukból adódóan mind-mind tárgyalásra kerülnek a későbbiek során.

4 Forrás: http://slideplayer.hu/slide/2186195/#
Habár Bartee fentebb felvázolt rendszere a problémamegoldás több lényeges aspektusával foglalkozik, mégsem tár ki minden olyan kérdésre, amelyek döntésemeléleti szempontból alapvető jelentőséggel bírnak. Az alábbiakban ezért először Howard (1968) taxonómiaja mentén fogunk haladni, aki a problémamegoldáshoz kapcsolódó kérdéseket a bizonytalanság, a komplexitás és az időtényező dimenzióiba rendezte. Howard érdekeltése elsősorban a tudományos kérdések területét érinti, amely nem tartozik szorosan tárgyalt témánkhoz, ezért elméletének bemutatásától eltekintünk, azonban az általa felvázolt modell három központi eleme nagyfokú relevanciával bír a legtöbb döntési probléma esetében, emiatt ezekkel külön foglalkozunk.

1.5. A bizonytalanság és kockázat

A bizonytalanság és a kockázat fogalmai döntésméleti kontextusban gyakran kéz a kézben járnak, azonban Knight 1921-ben megjelent Kockázat, bizonytalanság és profit című munkáját követően a közgazdaságtanban hagyományosan szokás különbséget tenni a két kifejezést illetően (Bélyácz, 2010). A fogalmak közötti differencia abban ragadható meg leginkább, hogy míg a kockázat esetében a különböző alternatívák megvalósulásának valószínűsége számszerűsíthető, addig a bizonytalanság kapcsán ez nem lehetséges (Elster, 1986). Fehér (2005) ehhez nagyon hasonlóan azt mondja, hogy azok a döntési helyzetek nevezhetők bizonytalannak, amelyek esetében a döntéshozó valamiért nem tud valószínűséget rendelni az egyes cselekvési alternatívák kimeneteihez, míg azok a szituációk, amelyek esetében van mód a lehetséges kimenetek predikciójára, kockázati címkével láthatók el. Pataki (2001) a bizonytalansághoz és kockázathoz kapcsolódó döntésméleti szakirodalom bemutatását követően azt javasolja, a témához fűződő különböző megközelítések csoportosítása leginkább a lehetséges állapotok és ezen állapotok bekövetkezési valószínűségének vizsgálata mentén célszerű, mivel ez a két paraméter minden bizonytalan helyzettől elválaszthatatlan. Pataki az így létrehozott ún. Á/V tipológiában a bizonytalanság három típusát különbözteti meg. Az első típusú bizonytalanság kategóriájába azokat az eseteket sorolja, amikor a vizsgált rendszer állapotai (és ezek kimenetei) ismeretlenek. A második kategóriába olyan bizonytalansági szituációk tartoznak, amelyek esetében ugyan a rendszer állapotai ismertek, azonban a kimenetek bekövetkezési valószínűsége nem, míg a harmadik esetben mind a vizsgált rendszer állapotai, mind pedig a kimenetekhez tartozó valószínűség ismert. Azt mondhatjuk, a klasszikus közgazdaságtan megközelítése tulajdonképpen minden döntési helyzetet a harmadik típusba sorolt, és – ahogy fentebb már utaltunk rá – csupán a múlt század közepétől kezdtek el a bizonytalanság típusának első két esetét is megvizsgálni az ökonómiaiban, amely aztán a döntésmélet tudományos elemzésének egyik legfontosabb kérdésévé nőtte ki magát (Engländer, 1999).

Szükséges néhány szót ejtenünk arról is, hogy a különböző tudományterületek képviselői többnyire mást-mást értenek kockázat alatt. Renn (1992) szerint például a kockázat értelmezését illetően megkülönböztethetünk technikai, közgazdasági, pszichológiai és szociológiai/antropológiai közelítéseket5, amelyek elsősorban a valószínűség fogalmának értelmezésében térnek el egymástól. Míg például a technikai közelítés szerint a korábban történt nemkívánatos események matematikai és statisztikai elemzésével objektív módon

5 A pszichológiai, szociológiai és antropológiai szemléletmódok közötti hasadék nem túlzottan széles, amit az is jól mutat, hogy Kasperon és munkatársai (1988) ezen szemléletmódok összevonását javasolja.

Mivel a szervezetek alapvetően nyitott rendszerként jellemezhetők – amely azt jelenti, hogy mind a bennük felhasznált erőforrások, mind pedig a működésüket meghatározó peremfeltételek tekintetében külső tényezőktől függnek –, a környezeti változók jelentősen hatással vannak működésükre. Tekintettel arra, hogy a bizonytalanság és a kockázat hátterében – hangsúlyozottan normatív nézőpontból szemlélve – elsősorban az információhiány áll (Rowe, 1977; Elster, 1986) ezért a szervezetek e bizonytalan tényezőket és a belőlük származó kockázatokat elsősorban az elérhető információk feldolgozásával igyekeznek kompenzálni (Galbraith, 1982). Az effajta megközelítés gyökerei egészen Herbert A. Simon munkásságáig vezethetők vissza, aki a legelsők között hangsúlyozta, a hatékony szervezeti döntéshozatal csak olyan módon biztosítható, ha a megfelelő információk a kompetens döntéshozók rendelkezésére állnak. Simon (1982) azonban ezzel párhuzamosan a döntéshozó pszichológiai korlátaira is kitért, és kiemelte, hogy a túlinformáltság éppen olyan káros lehet a döntéshozatal során, mint az alulinformáltság. Az információs rendszerek
alapkoncepciója mögött pontosan az a felismerés húzódik meg, hogy a szervezet tagjai részére – akik emberi mivoltukból adódóan csupán behatárolt kognitív erőforrások felett rendelkeznek – olyan számitógépes alkalmazásokat kell kifejleszteni, amelyekkel optimalizálhatjuk a döntéshozatal feltételeit a problémákhoz fűződő releváns információk elérhetővé tételével. A fejlett döntéstámogató rendszerek pedig ezen túllépnak, hiszen nem csupán az információk visszakeresését és szűrését végzik el, hanem a probléma analizálását követően valamilyen cselekvési alternatívát is megadnak a kérdéses helyzetre vonatkozóan.

A kockázatvállalásra és a bizonytalanság érzékelésére személyiségváltozók és szociálpszichológiai tényezők is hatással vannak. A szakterület egyik úttörőjének Frenkel-Brunswick (1948) tekintheti, aki a kétértelműséggel szembeni toleranciát a személyiség meghatározó jellegzetességének tartja. Sorrentino és munkatársai (1984) ugyancsak úgy vélik, az egyének jelentős különbséget mutatnak a bizonytalansághoz való viszonyulásukban. Míg egyes személyek a bizonytalanságot izgalmas és kihívásokkal telített szituációknak észlelik,
addig mások a lehetőségekhez képest minél inkább igyekeznek kitérni az ilyen helyzetek elől. Douglas és Wildavsky (1982) szerint a kultúra és a társadalmi szerepek ugyancsak nem elhanyagolható befolyást gyakorolnak az egyének kockázatvállalási hajlandóságára, ebből adódóan a szervezeti kultúra és a szervezetben betöltött különböző szerepek szintén visszahatnának az egyének döntéseire (Bakacsi, 2004). Wallach, Kogan és Bem (1962) szerint a szervezet tagjai ugyanazon döntési probléma kapcsán egyénileg sokkal kisebb kockázatot hajlandók elfogadni, mint egy csoport tagjaként. Arra is rámutatnak, hogy egy-egy döntési helyzettel összefüggésben a felmerülő véleménykülönbségek nagyban növelhetik a bizonytalanság mértékét, ráadásul a nagyobb bizonytalanságú tagok csoportvitákra gyakorolt hatása jelentősebb, mint a kisebb bizonytalansággal jellemezhető tagok hatása. Mivel a bizonytalanság sokszor a döntési helyzet komplexitásából jön létre, ezért a következőkben ezt a fogalmat tekintjük át.

1.6. A probléma komplexitása és struktúrája
A komplex problémák a döntéselmélet kiemelt figyelmét élvezik, mivel egyrészt a valóságos döntési helyzetek jelentős része tartozik ebbé a csoportba, másrészt pedig esetükben a célok és az ezek elérését szolgáló cselekvési alternatívák gyakran túlságosan homogénnek ahhoz, hogy az egyszerűbb döntéseknekél használható cél-eszköz séma zökkenőmentesen alkalmazni lehessen (Keen, 1977). Pohl (2008) szerint a komplex döntési helyzetek öt általános jellemvonása, hogy (1) számos egymással összefüggő változót tartalmaznak, amelyek közül (2) egy vagy néhány változó nem-definiálható, továbbá (3) a releváns információk változékonysága miatt (4) a célohoz vezető megoldások dinamikusan változnak, emiatt pedig a szituáció kapcsán (5) több megoldás lehetséges. A szervezetben lezajló komplex döntési helyzetek máig elfogadott alapkategóriát Simon (1972) hozta létre elsősorban Reitman (1965) tanulmányára támaszkodva. Reitman eredeti koncepciója szerint a problémamegoldás során a komplexitás függvényében megkülönböztethetünk jól és rosszul definiált kategóriákat, amelyek mintájára Simon saját terminológiájában megalkotta a jól és rosszul struktúrált problémák fogalmait. Gorry és Scott-Morton (1971) nyomán a rosszul struktúrált problémák helyett ugyancsak használatos a (félig, vagy) nem struktúrált problémák kifejezés is.

A szakirodalomban később ezt az alapfelosztást kibövítették. Turban és munkatársai (2005) például négy osztályt állítottak fel, melyek körébe a jól struktúrált, a félig struktúrált, a nem struktúrált és a nem definiálható problémákat rendelték. Habár ez a cizelláltabb felosztás a döntéstámogató rendszerekre tárgyalása kapcsán nagyon hasznos – hiszen már a bevezetőben is utaltunk rá, hogy e számítógépes alkalmazások elsősorban a félig-struktúrált problémák

1.6.1 Jól struktúrált problémák

A jól struktúrált problémák közé azok tartoznak, amelyek esetében egyrészt világosak az elérendő célok, másrészt ismertek azok a műveletek, amelyek alkalmazásával ezeket a célokat meg tudjuk valósítani, harmadrészt pedig a megoldások minden esetben kizárólagosak és ellenőrizhetők. Az ilyen jellegű feladatok könnyen algoritmizálhatók, számítógépekkel történő feldolgozásuk többnyire egyszerűen megoldható, emiatt programozható problémáknak is nevezzük őket (Sántáné et al., 2007). Tipikusan ebbe az osztályba sorolhatók például az egyszerű matematikai feladatok.

1.6.2. Félig struktúrált problémák

A félig struktúrált problémák ugyan rendelkeznek néhány strukturált elemmel, és az elémi kívánt célok is jól definiálhatók, azonban vagy a bemeneti, vagy a kimeneti adatok, esetleg a velük kapcsolatos műveletek egy része már nem egyértelmű a döntéshozó számára (pl. Vercellis, 2009). Perrow (1994) szerint a félig strukturált problémák pontosan az előzőek miatt nehezen algoritmizálhatók. A problémamegoldás e szintén megjelenik az ún. információkonfliktus (Vári, 1996), amelynek kapcsán az egymásnak ellentmondó adatok és információk nagymértékben megnehezíthetik az ítéletalkotási folyamatot. Egy jól struktúrált probléma előnyösnek tekinthető abból a szempontból, hogy a felmerülő kérdésre csupán egyetlen helyes válasz adható, ebből adódóan a döntéshozó, amennyiben megtalálja ezt a megoldást, nyugodt lehet afélől, hogy a problémára a legoptimálisabb választ adta (Mérő, 2008). Ezzel szemben a félig-struktúrált problémák esetében a helyes megoldások száma akár több is lehet, amelyek ráadásul magukban hordozzák a döntéshozó szubjektív ítéleteit. A

1.6.3. Nem strukturált problémák
A fenti összevetésből látható, hogy a nyitott és zárt jellegű problémák teljesen más termésettettel bírnak. Meg kell azonban jegyeznünk, hogy amennyiben egy nyitott vagy félig strukturált/nem strukturált probléma felbontható néhány zárt vagy jól strukturált alproblémára, akkor az eredetileg nem programozható problémából dekomponálás után programozható probléma hozható létre. Mindez meghatározó jelentőséggel bír annak tekintetében, hogy egy adott problémakör számítógépes döntéstámogatása lehetséges-e vagy sem (Pomerol és Adam, 2006).

2. ábra: A nyitott és zárt problémák tulajdonságai

Forrás: szerző.
1.7. Az idő

Elster (1986) felhívja rá a figyelmünket, hogy noha gyakran elhanyagoljuk az idő jelentőségét a döntéshozatalallal kapcsolatos kérdések tárgyalásakor, valójában e faktor nagyon is fontosnak tekinthető. Jones és Gerard (1967) viselkedéses orientáció elmélete alapján ezt a feltevést erősítette meg például Freedman és Edwards (1988) is, akik bizonyítékot találtak arra, hogy az enyhe fokú időnyomás a kognitív folyamatok serkentésén keresztül előnyösen befolyásolja a döntéshozatalt. Más vizsgálataikban azt is kimutatták, hogy az időnyomás teljes hiánya és szélsőségesen magas mértéke egyaránt csökkenti a problémamegoldás hatékonyságát, amelyet a kutatók az első esetben az alacsony szintű izgalmi állapot, míg a második esetben a szélsőségesen magas distresszel magyaráznak.

Janis és Mann (1977) arra kereste a választ, hogy a döntéshozatal különböző szakaszaiiban jelenlévő stressz milyen hatást gyakorol az ítéletalkotási folyamat végeredményére. A problémamegoldás – ahogy már Bartee problématerének ábrázolásánál is láthatottuk – szekvenciális folyamat, amelynek lépései általában négy elkölönhetető részre szokás felosztani. Neumann és Morgenstern (1947) terminológiájában mindezt a probléma azonosítását, a megoldás keresését, az értékelést és a választást jelenti. Simon (1982) a felismerés, a meghatározás, a választás és a megvalósítás fázisait különítette el, míg Keeney (1992) a döntéshozatali tevékenységet a problémamegoldáshoz, a kritériumok meghatározásához, az alternatívák létrehozásához, az alternatívák értékeléséhez és a döntés csoportjaira bontja. Amennyiben a problémamegoldás valamelyik lépcsőfokánál nem áll rendelkezésre a kellő
mennyiségű idő, illetve párhuzamosan több feladatot kell megoldani, a szisztematikus információfeldolgozás nehézkessé válhat.

időnyomás alatt is képes lehet meglehetősen nagy pontosságú valószínűségi ítéleteket alkotni döntési helyzetekben akkor, ha a kérdéses problémával összefüggésben megfelelő tapasztalati tudással és e tudást aktiváló mentális kulcsokkal rendelkezik. Hasonlóan vélekedik Klein (1999), aki a felismerés alapú döntéshozatal jelentőségét tanulmányozta sakkozók, orvosok és tűzoltók körében. A gyors döntések kognitív alapját szerinte is a hosszú távú memóriából előhívható mentális reprezentációk alkotják, amelyek gyakran valamilyen analógia formájában jelennek meg a döntéshozó tudatában. Gladwell (2010:14) ugyancsak amellett érvel számos kutatási eredményt bemutatva, hogy az általa adaptív tudatalattinak nevezett ún. belső számítógép, amely a környezeti ingerek feldolgozásának oroszlánrészét végzi, „kiváló munkát végez a tények mérlegelésében, a helyzetmegítélésben; figyelmeztet a veszélyre, célokat határoz meg, és bonyolult, de hatékony módon cselekvésre készítenet”.

Összefoglalás

Az eddigi során megvizsgáltuk a szervezet, a döntés és a problémamegoldás közötti kapcsolatot, továbbá Howard (1968) és Bartee (1973) taxonomiái mentén ismertettük a döntéshozatalhoz köthető legfontosabb alapfogalmakat, illetve részben kitértünk ezek pszichológiai aspektusaira is. Mindezt annak érdekében tettük, hogy birtokába kerüljünk azoknak az alapvető döntéseméleti ismereteknek, amelyek nélkülözhetetlenek lesznek egyrészt a hipotéziseink felállításához, másrészt pedig a vizsgálati eredmények kifejtéséhez. A következő fejezetben az emberi gondolkodásra és problémamegoldásra irányuló megközelítéseket fogjuk áttekinteni, amelyek célkeresztjében a racionalitás kérdésköre áll.
2. PREKONCEPCIÓK AZ EMBERI GONDOLKODÁSRÓL

A ma élő ember rendszertani elnevezése *homo sapiens sapiens*, amely gondolkodó vagy értelmes embert jelent. Mindez tökéletesen tükrözi azt a tudománytörténetben hosszú évszázadokon át szilárd alapokon álló doktrínát, miszerint fajunk legfontosabb sajátossága a racionális, azaz az ésszerűség. Simon és követői ezt az alapfeltevést kérdőjelezték meg, miután különböző döntési helyzeteket vizsgálva olyan következtetéseket mutattak rá, amelyek felvetették a korábbi paradigma tarthatatlanságát. Simon korlátozott racionális elmélete ilyen módon komoly tudománytörténeti tradíciókkal került összeütközésbe, hiszen a korlátozott racionális és a vele rokonszervatív irányzatok azt állítják, a döntéshozó a legtöbb esetben csupán kielégítő, és nem optimális megoldásokra törekzik. Ennek oka, hogy az egyén egyrészt képtelen az összes alternatívára és azok következményeinek teljes körü feltárására, másrészt a döntés során az ember kognitív rendszerének sajátosságai miatt még az elérhető információk feldolgozása nem zajlik zökkenőmentesen (Simon, 1982). Ezekből a kutatási eredményekből született meg aztán a gondolat, hogy a szervezeti döntéshozókat támogatni kell az ítéletalkotási folyamat során a hatékonyság fokozása érdekében. Mivel a vita még részben ma is tart arról, hogy az ember alapvetően racionális lény vagy sem, amely jelentős mértékben meghatározza a döntéshozatalról való tudományos és gyakorlati gondolkodás irányait, ezért a következőkben röviden összefoglaljuk a témához kapcsolódó irányzatokat.

2.1. Filozófiatörténeti előzmények

Az európai kultúrkörben a racionális emberkép első hajtásai a szofisták idejében szárba, akik a bölcselő fókuszát a korábbi természetközpontú filozófiákról az emberre irányítva megkísérelték a gondolkodáshoz kapcsolódó kérdések rendszerbe foglalását (Störing, 1997). Ez a törekvés vezetett el később az arisztotelészzi logikához, amely arra az axiómára épül, miszerint az ember az értelme segítségével képes megismerni a körülmény lévő valóságot (Russell, 1994). Az antik bölcsellők eredményeit aztán a kereszteny gondolkodók áltultétek a középkori művészetébe, természetesen a teológia céljainak figyelembevételével. A kereszteny filozófusok nem tartották összeegyeztethetetlennek a hit és az ész dolgait, mi több, úgy gondolták, a ráció a teremtetett világ bonyolult jelenségeinek tanulmányozásával éppen hogy bizonyítékot szolgáltat Isten létezésére. Fontos azonban közbevetnünk, hogy amíg

8 Ez az ún. kreacionista megközelítés, amely még napjaink tudományos életében is parázs vitákat gerjeszt. Például az egyre népszerűbb intelligens tervezettség elméletének preferálói szerint számos biológiai alapú bizonyítékot lehet felhozni annak alátámasztására, miszerint az élet nem az evolúció során jelent meg. A
Descartes után az ész a világ megismerésének egyik legfontosabb eszközévé válik, addig a középkori filozófiában csupán a hithez vezető mellékszereplő pozícióját töltötte be. Például Szent Ágoston szerint az ember a megtéréshez vezető úton a ráción segítségével képes megtalálni az igaz szabályokat és eszméket (Nyíri, 2003), a skolasztikában Szent Anzelm híres istenérve pedig ugyancsak azt hangsúlyozta, hogy az ész a belátáson keresztül eljuttat a hithez és végül Istenhez. Ez a fajta megközelítés végül Szent Tamás filozófiájában érte el tetőfokát, akinek sokat idezet mondása miszerint „a filozófia a teológia szolgálóleánya”, amely jól illusztrálja a korszakban uralkodó paradigmát az értelem hittel szembeni alárendelt szerepéit illetően.

A katolikus egyház tanításainak erőzóját elsősorban a csillagászatban elért felfedezések indították el, amelyek mellé egyre hangosabb és nyíltabb filozófiai kritikák is társultak (McGrath, 2012). Az ún. „kopernikuszi fordulat” fokozatosan szembeszegült azzal a középkorban népszerű és az egyház által is preferált elképzeléssel, miszerint a Föld a mindenség középpontja. A tudományos bizonyítékok sokora egyre inkább aláásta az egyház tekintélyét, és végül oda vezetett, hogy a ráció fogalmának újraértelmezésével háttérbe szorult a bibliiai kinyilatkozatot tudás és a hit jelentősége a valóság megismerésének folyamatában.

A tekintélyelvre alapozott ismeretelméleti módszereket megkérdőjelező empirizmus és racionализmus paradigmaváltáshoz vezetett a gondolkodásban. Míg az empirizmus a tapasztalatokban, addig a racionализmus a tiszta észben találta meg az eszközt, amely a legalakalmasabb a világ rejtett jelenségeinek feltárására. Descartes szerint ugyan az érzékszervektől származó tudásunk gyakran illúziókra épül, ezért az általa kidolgozott racionálisım inban a szenzualizmusnak lényegesen kisebb szerep jut, mint az empirikus megközelítésben, más racionális filozófusok azonban némileg elfogadóbb nézőpontot vettek.
fel az empirista ismeretszerzési módszerrel szemben, ami a két módszertani nézőpont rokonságát mutatja. Például Leibniz szerint főleg a hétkóznapi tudásunk legnagyobb hanyadában pontos ismeretekhez juthatunk az érzékelés és a tapasztalat által is (Nyíri, 2003). Bár hagyományosan szokás a két ismeretelméleti módszert élesen szétválasztani egymástól, az empirizmus és a racionalizmus mégis nagyon hasonló a tekintetben, hogy a valóság megismerése kapcsán mindkettő elfogadhatatlannak tartja a dogmatizmus mindennemű formáját (Pléh, 2010). Ez a fajta közös alap lehetőséget teremtett az újkori racionális emberek megzületésére, amely esetenként kissé szélsőséges formában tört felszínre.

Descartes például az ész határtalan megismeréséért hirdette, később pedig Hegel fogalmazott úgy, hogy „az emberi ész korlátja egy haszontalan szófordulat” (id. Schnädelbach, 2003:1).

2.2.A klasszikus és neoklasszikus közgazdaságtan antropológiai felfogása

Akár hogyan is történt, a racionális ember koncepciója hatalmas karriert futott be az ökonómiában. A klasszikus iskolát követő neoklasszikus közgazdaságtan – amely a 19. század utolsó és a 20. század első harmadában élte virágkorát – szintén elfogadta és magába építette a racionálitás elvét. Ez a megközelítés oly időtállónak bizonyult, hogy még a 20. századi közgazdaságtan centrális dogmáinak is az egyik legfontosabb eleme az ésszerűen cselekvő ember volt (Mérő, 2003). A múlt század közepén működő közgazdászok közül például Mason és Friedman meggyőződéssel vallották, hogy a szervezetek emberének ésszerűségét teljesen felesleges megkérdőjelezni (Simon, 1982). Jasvaslatuk szerint ebben a kér désben a gordiuszi csomót Occam borotvájával kell "átvágni": használjuk a legegyszerűbb, működő elvet, amely a homo oeconomicus esetében nem más, mint a racionálitas. Harsányi (1995) ennek okaként az elméletből következő predikciós előnyöket jelöli meg. Véleménye szerint ezek, még ha nem is tőkéletesen, de többé-kevésbé képesek bejósolni az emberi viselkedés irányait.

2.3. Racionalitás a társadalomtudományokban

A politológia keretein belül például Downs (1957) foglalkozott a racionálitás kér déskörével. Downs eredetileg úgy véle, az egyének politikai aktivitásának hátterében főképpen saját haszonmaximalizálásuk és érdekeik képviselete áll, nem pedig az össztársadalmi érdekek dominálnak. Downs sok vitát kíváltképpen távolmaradás elmélete szerint, ha az egyén felismeri, hogy az általa leadott voks értéke fordítottan arányos a szavazók számának emelkedésével, akkor választások alkalmával – amennyiben a szavazók jelentős részvételi arányára lehet számítani –, egyszerűen távol marad az urnáktól. Downs mindezt azzal
magyarázza, hogy az ésszerűen eljáró választópolgár „bolond lenne” feleslegesen fáradozni egy olyan ügy érdekében, ahol a saját preferenciája szinte egyáltalán nincs hatással a választás eredményére. Az elmélet alapján az ilyen személy akkor jár el racionálisan, ha ahelyett, hogy kiöltözne és beutazna a szavazókörzetbe, inkább elmegy kirándulni a családjával. A racionális tájékozatlanság elméletében Downs pedig azt hangsúlyozza, az ésszerűen eljáró személy belátja, valójában nem képes nyomon követni a politikai események rejttet mozgatórúgót, és nem rendelkezik elegendő információval annak elődöntésére sem, ki lenne a legalakalmasabb a képviseleti rendszerben az egyén által vallott értékek és érdekek képviselésére, ami szintén közömbös viselkedésre késztheteti (Johnson, 1999). Azelmélet felveti, hogy amennyiben minden választópolgár tisztán racionálisan járna el, a demokrácia mint politikai rendszer működésében lényegesen változ. Downs később többek között Selznick (1949) institucionista elméletének10 hatására módosította elképzeléseit, és a hangsúlyt az egyének racionális önérdekei felől a társadalmi értékek irányába tolta el (Andorka, 2003).

A fentiek ellenére Vicsek (2007) szerint a racionális döntések elméletei a szociológiában viszont továbbra is töreken népszerűségnek örvendnek. Andorka (2003:85-86) szavaival éve a „racionális döntés elmélete a klasszikus és neoklasszikus közgazdaságtan felfogását ülteti át a szociológiába, azaz az egyes emberek racionális megfontolásaik alapján, érdekeik figyelembevételével, a hasznak és költségek összemérésére támaszkodva döntenek”. Ez az alapelv köszön vissza például Homans (1958) társadalmi csere elméletében is, aki az altruizmus mögött az egyén racionális mérlegelési folyamatának megnyilvánulását látta. Úgy véle, a társadalom tagjai az egymással történő interakciók során még akkor is ésszerűen járnak el, amikor látszolág lemondva egy számukra értékes dologról, közgazdasági értelemben nem a hasznossági függvény optimumát keresik. Az ilyen helyzetekben ugyanis partnerüktől viszonzás képpen elvárják egy alternatív igényük kielégítését, amely ha nem történik meg, töbnyire az „ügylet” kimenete sikertelen lesz. Lindenberg (in Csigó, 2007) holland társadalomkutató summációja szerint ugyancsak célszerű az embert a klasszikus közgazdaságtan homo oeconomicus racionális antropológiai modelljébe helyezni annyi módosítással, hogy minden esetben figyelembe kell venni az egyéni célokat és preferenciákat. Lindenberg – hasonlóan Homans alapkoncepciójához – úgy véli, az ember racionális elvek alapján hozza meg döntéseit, azonban a társadalmi normák és értekek hatásai miatt esetenként úgy tűnhet, mintha választásainkat anomáliaik terhelnék. Ez a megközelítés alapvetően a

10 Philip Selznick institucionista elmélete lényegében azt mondja, hogy a szervezeteknek nem csupán racionális céljai vannak, hanem ezeken túlmenően olyan értékeknek is teret adnak, amelyek tümutsatnak az adott szervezet racionális érdekein.
módszertani individualizmusra támaszkodik, ami alapján a társadalmi jelenségekre minden esetben csupán az egyén meggyöződéseinek, cselekvéseinek és döntéseinek vizsgálataival adható tudományos magyarázat, illetve a társadalmi jelenségek az egyéni cselekedetek összegződéseiként foghatók fel (Csontos, 1998).

2.4. A racionalitás fogalmi pontosítása

Általánosan azt mondhatjuk, a racionalitás a tiszta értelembre alapozott olyan gondolkodásmód, amely mentes az egyén szubjektivitásától és érzelmeitől (Mérő, 2008), illetve a társadalmi és vallási befolyásoktól (Radácsi, 2005), valamint nem tartalmaz önellentmondásokat és esetében az egyén mindig a legjobb lehetőség kiválasztására törekszik (Mészáros, 2003). Farkas (2006) szerint a racionalis egyén „döntési algoritmusa” egy olyan
folyamatként írható le, amely során a döntéshozó felkutatja az alternatívákat, majd elemezve ezek kimeneteli lehetőségeit összevetését végez. A haszonmaximalizálás optimumát keresve felállítja preferencia sorrendjét, s végül kiválasztja és megvalósítja a legjobb alternatívát. Főleg az utóbbi két szempont gyakori megsértése már a neoklasszikus közgazdaságtan képviselőinek is feltűnt, ezért Max Weber – aki közgazdász végzettsége ellenére egyben a modern szociológia egyik alapítója képességére is tisztelünk – a racionalitás fogalmának cizelláltabb értelmezésével próbált választ találni a kérdésre (Tribe, 2009).

2.4.1. Cél- és értékracionalitás

Mint láthattuk, a racionális emberkép esetében a klasszikus közgazdászok úgy vélték, az egyének döntéseit minden esetben a haszonmaximalizálás vezérli, amelynek a gazdaság keretei között az egyetlen fokmérete a pénz által képviselt érték. Noha Bernoulli már az ökonómia formálódásának idején felvetette az ún. szentpétervári paradoxonnak elkeresztelt probléma kapcsán, hogy az egyén számára a pénz szubjektív értéke valószínűleg nem egyenes arányban növekszik az általa megszerzett vagyon mértékével, erre a korabeli közgazdászok érdemben nem reagáltak (Berde és Petró, 1995). Később más gondolkodók is ugyanarra a felismerésre jutottak, mint Bernoulli (például Jeremy Bentham és Juvenal Dupuit), amelyet aztán Gossen nyomán a közgazdaságtan ma a csökkenő határhozson elveként ismer. Ilyen módon az ökonómiában a 19. század második felétől az érték fogalma mellett egyre jelentősebbé vált a hasznosság is, amely arra világított rá, hogy az egyén választásai során nem tisztán a profitmaximalizálás elvét tartja szem előtt.

Max Weber erre reflektálva bevezette az ún. cél- és értékracionalitás fogalmait. Véleménye szerint „célracionálisan cselekszik az, aki cselekvését célok, eszközök és mellékkövetkezmények szerint irányítja, s emellett racionálisan egybeveti az eszközöket a célokkal, a célok a mellékkövetkezményekkel, s végül a különböző lehetséges célokat egymással; tehát semmi esetre sem cselekszik affekt íven (kiváltképpen nem emocionálisan) vagy tradicionálisan“ (Weber, 1976:54) Ezzel szemben „tisztán értékracionálisan cselekszik az, aki az előrelátható következményre való tekintet nélkül azt teszi, amit a kötelesség, a méltóság, a szépség, a vallási előírás, a kegyet vagy bármiféle »ügy« fontossága parancsol neki“ (Weber, 1976:54). Ez a felfogás tulajdonképpen jelentős előrelépés volt a homo oeconomicus korábbi antropológiai leírásához képest, hiszen már figyelembe vette az egyén rejtett szándékait. Nem véletlen, hogy e koncepció publikálását követően a Weber utáni pszichológia is olyan sokat foglalkozott az attitűdök problémakörével, amelyben kísérletet
tettek az ember külvilág jelenségeihez fűződő látens viszonyrendszerének feltárására (Thorne és Henley, 2000).

2.4.2. A racionális normatív megközelítései

Weber (1976:54) megfogalmazása szerint a „célracionális álláspontjából nézve az értékracionális minden esetben irrationális“. Annak érdekében, hogy a döntéshozó viselkedése webéri értelemben ne váljon irrationálissá, el kell kerülnie a racionálítással összefüggő viszonyrendszerének feltárására (Thorne és Henley, 2000).

A normatív modellek egyik prototípusának tekinthető játékelmélet – amelynek alapja Neumann az 1920-as évek végén rakta le – pontosan ezekkel a kérdésekkel foglalkozik. Myerson (1991) szerint a játékelmélet matematikai modellek segítségével arra próbál választ találni, hogy az intelligens és racionális döntéshozóknak milyen elvek szerint kell eljárnia a különböző döntési helyzetekben. A játékelméletben egy-egy cselekvés attól függően, hogy a résztvevőnek van-e lehetősége a kimenetel bármilyen szintű befolyásolására, a szerencsejáték vagy a stratégiai játék kategóriájába tartozhat (Forgó és Szép, 1974). Míg a szerencsejátékokkal leginkább a valószínűségszámítás, addig a stratégiai játékhelyzetekkel a döntésmélet foglalkozik. A modern döntésmélet egyik legjelentősebb és több későbbi modellben is visszaköszönő normatív axiómarendszerét Neumann és Morgenstern (1947) a Játékelmélet és gazdasági viselkedés című munkájukban publikálták. A szerzőpáros a racionálisan eljáró döntéshozóval szemben támasztott, fentebb már említett általános elvárásokon túlmenően további specifikus követelményeket is megfogalmazott, amelyek a következők11:

11 A kérdést magyarn nyelven Zoltayné (2005:75-77) is tárgyalja más aspektusok figyelembe vételével.
1. Összehasonlíthatóság: amennyiben A és B cselekvési alternatívák egy dimenzióba esnek, akkor a racionális döntéshozó az általa megválasztott kritériumok alapján ki tudja választani a számára megfelelőbb cselekvési alternatívát.

3. Dominancia: A és B cselekvési alternatíva esetén, amennyiben az alternatívák több tulajdonsága is meghatározó és összehasonlítható, a racionális döntéshozó azt az alternatívát választja, amely legalább egy tulajdonságában előnyösebb a másik alternatívánál.

4. Függetlenség: a racionális döntéshozó tisztában van vele, hogy az egyes alternatívák megvalósulásának valószínűségei függetlenek a döntéshozó valószínűségi ítéleteitől.

A fenti elvekre annak érdekében van szükség, hogy a racionálisan eljáró döntéshozó a különböző alternatívákat össze tudja hasonlítani, és létre tudja hozni az alternatívákrat vonatkozó preferencia sorrendjét. Neumann és Morgenstern normatív modelljét döntési alapmodellnek is nevezzük (Fehér, 2005), amely nagymértékben elősegíttette a különböző döntési alternatívák alapul összehasonlítását, ezáltal megnyitotta az elméleti utat a későbbi számítógépes döntéstámogatás felé. Az eredeti modell azonban a valóságos döntési helyzetek szempontjából több nehézséget is hordoz magában. Egyrészt megörökölve a közgazdaságtan antropológiai koncepcióját, döntési helyzetben teljesen informált döntéshozót feltételez, ezáltal pedig negligálja a bizonytalanság problémáját (Harsányi, 1995). Másrészt nem veszi figyelembe az egyén pszichológiai korlátait, amelyek jelentős mértékben kihatnak az információk feldolgozására (Simon, 1982). Harmadrészt pedig alkalmazási hatóköre csupán a jól strukturált problémák megoldására terjed ki, amelyek a valóságos döntési helyzetekben ritkán fordulnak elő tiszta formában. Mindebből adódóan a normatív alapmodell a gyakorlati életben nagyon szűk keretek között alkalmazható.

A felsorolt nehézségeken túl van még egy probléma, amiről említést kell tennünk. A döntéselmélet különböző teoretikusai többnyire egyet értének abban, hogy a valóság komplex döntési helyzeteiben még a racionálisan eljáró döntéshozó számára sem biztos a korábban kitűzött célok sikeres elérése. Ennek oka, hogy az egyén számára a környezet tényállapotainak befolyásolása gyakran nem, vagy csak nagyon korlátozott módon lehetséges, amelyek azonban nyilvánvaló módon jelentős hatást gyakorolhatnak a választott alternatíva

34
kimenetére. A játékméletben ezért erre reflektálva a tisztán determinisztikus helyzetek osztálya mellé bevezették a sztochasztikus helyzetek kategóriáját, ahol a különböző kimenetek bekövetkezésének valószínűségei nem, vagy csupán részben ismertek a döntőshozó számára, ebből adódóan megjelenik a bizonytalanság és a kockázat.

Láthattuk, a bizonytalanság és a kockázat közötti fő különbség döntéseméleti szempontból abban áll, hogy amíg a döntőshozó bizonytalanság esetén nem képes az egyes alternatívák kimeneteinek bekövetkezéséhez valószínűségeket rendelni, addig a kockázat esetében képes erre. Azt is felvetettük, hogy a bizonytalanság és a kockázat párhuzamba állítható abból a nézőpontból, hogy a kimenetek egyik esetben sem tökéletesen beláthatók. Harsányi, a játékmélet Nobel-díjas kutatója szerint a modern döntésemélet számára éppen az a legfontosabb feladat, hogy a racionalitás határait a bizonytalanság és kockázat mellett meghozott döntésekre is kiterjesztesse (Kovács, 2003). Természetesen már Harsányi felvetése előtt is születtek normatív modellek mind a bizonytalási helyzetekre, mind pedig a kockázat esetére, amelyeket az alábbiakban röviden összefoglalunk.

2.4.2.1. A bizonytalanság esetéhez köthető döntési modellek

Bizonytalanság esetén a döntéshozó tehát nem képes az egyes alternatívák kimeneteihez valószínűséget rendelni. A normatív modellnek javaslata szerint az ilyen jellegű szituációkban a döntőshozónak „csupán” az alternatívák kiértékelésének preferenciafüggvényét és az alkalmazni kívánt döntési szabályt kell meghatároznia (Fehér, 2005). A következőkben a bizonytalansági szituációk e legfontosabb klasszikus döntési szabályait vázoljuk fel.

1. Maxi-min szabály (veszteségelkerülés): a döntőshozó a veszteség minimalizálására törekedik, és ennek érdekében a rendelkezésre álló megoldási alternatívák közül azt választja, amelyik legrosszabb esetben is a legmagasabb értékkel rendelkezik.

3. Hurwitz-kritérium („középút” keresése): a döntőshozó megvizsgálja a megoldási alternatívák legjobb és legrosszabb kimeneteit, és azt az alternatívát választja, amelyik esetében a két szélsőérték súlyozott átlaga a legmagasabb.
4. Laplace-kritérium: a döntéshozó minden alternatívára minden lehetséges kimenetének bekövetkezési valószínűségét azonosnak tekinti, és az egyes kimenetek várható eredményeit a bekövetkezésük valószínűségével súlyozva azt az alternatívát választja, ahol a többi alternatívához viszonyítva a legmagasabb értéket várható.

2.4.2.2. A kockázati helyzetekhez köthető eljárások

A kockázati helyzetek alapmodelljei attól függően, hogy a döntéshozatal során hány változót vesznek figyelembe az egyes alternatívák esetében, egy- vagy többdimenziósak lehetnek. Praktikus okokból írt csupán a kockázati szituációk leggyakrabban használt egydimenziós normatív modelljének lényegét vázoljuk, amely középpontjában a döntések várható értékei állnak.

A kockázati szituációk esetében a leggyakrabban alkalmazott döntési szabályt a különböző megoldási alternatívák várható értékeinek összehasonlítása jelenti (Fehér, 2005). Akár a bizonytalansági helyzetekben, a döntéshozó itt is eljárhat például a maxi-min és a maxi-max kritériumok alapján annyi módosítással, hogy a választás során figyelembe veszi az egyes eseményekhez tartozó valószínűséget is. A módszer egyszeri problémák megoldására kevésbé használható, mivel ezek esetében nincs lehetőség sem a korábbi tapasztalatokra, sem pedig statisztikai eljárásokra hagyatkozni. Ebből adódóan ez a koncepció főként ismétlődő jellegű
döntési helyzetekben nyújthat segítséget. Ezzel szemben a kockázati szituációk többdimenziós modelljei több váloztót is figyelembe vesznek, s ilyen módon az egyszeri problémák esetében is jobban alkalmazhatók. E modellek ismertetése azonban hosszas statisztikai bevezetést igényelne, és mivel ez a kitérő nem járulna hozzá jelentősen mondanivalónk kifejtéséhez, ezért ezek bemutatásától eltekintünk. Ehelyett inkább Savage (1954) releváns gondolataira koncentrálunk, aki Neumann és Morgenstern játékelméletét próbálta összhangba hozni a kockáztat mellett hozott valós döntési helyzetekkel.

2.4.2.3. A szubjektív várható hasznosság (SEU) elmélete

Noha a várható hasznosság\(^{12}\) fogalmának modern értelmezését Ramsey (1931) alkotta meg, a kifejezés ennek ellenére Neumann és Morgenstern játékelméletének köszönhetően vált szakmai berkekben ismertté. Neumann és Morgenstern eredeti modelljében az egyes alternatívák kimeneteinek egyenletes valószínűség-eloszlásából indult ki, amely alapelvként kiválóan működik elméleti keretek között, azonban valóságos döntési helyzetekben gyakorlatilag nem használható, mivel ezek esetében a kimenetek valószínűségeiről gyakran semmilyen információval nem rendelkezünk.

Az első fejezetben utaltunk a problémamegoldáshoz kapcsolódó szubjektív tényezők szerepére. Azt mondta, a probléma egy ‚észlelt jelen idejű állapot fenntartására vagy megváltoztatására irányuló igény. Mivel a döntéshozatalt a problémamegoldás részének tekintjük, ezért a bizonytalanság és kockázat mellett hozott döntések esetében – ahol a normatív alapmodell logikai lépései nehézkesebb megvalósítani – különös jelentősége van az említett megközelítésnek. A játékelmélet várható hasznosság koncepcióját ezért Savage (1954) kiegészítette a szubjektív várható hasznosság fogalmával. A SEU modell – összhangban a közgazdaságtan korábbi antropológiai modelljével – abból indul ki, hogy a döntéshozó tisztában van saját preferenciáival, másként fogalmazva „egy jól definiált hasznosságfüggvénnyel rendelkezik” (Simon, 1982). Ugyancsak feltételezi, hogy az egyén ismeri az összes alternatívát, amelyek kimenetet minden esetben tökéletesen belátja, illetve ezekhez a kimenetekhez képes egy-egy valószínűséget is rendelni. És végül a koncepció azt is felteszi, hogy a döntéshozó azt az alternatívát választja, amely a hasznosságfüggvénny alapján a maximumot nyújtja számára. Savage lényegében azt mondta, amennyiben a döntéshozó kielégíti Neumann és Morgenstern játékelméletének fentebb ismertetett axiómát (ha racionális), akkor az önmaga számára megkonstruált szubjektív valószínűségek alapján

\(^{12}\) Hasznosság (utility): az egyéni szükségletek kielégítésének képessége.
választásai tekintetében továbbra is a várható hasznosság maximalizálására törekszik (Newell, Lagnado és Shanks, 2007). Ez a koncepció tökéletesen illeszkedik a kockázati szituációk esetében felvázolt egy- és többdimenziós modelek elképzeléseibe, de újszerű volt abban a tekintetben, hogy a korábbi klasszikus normatív modelek eredményeit ötvözte a játékelmélet eredményeivel. Az emberi döntések tudományos igényű tanulmányozása azonban rámutatott Savage elméletének hiányosságaira, amelyről az alábbiakban ejtünk szót.

2.5. A racionalitás kritikái

2.5.1. A korlátozott racionalitás elmélete

Annak ellenére, hogy a felvilágosodás után a racionalitás a tudományos megismerés egyik alapposztulátumává vált, a múlt század közepére – miután megvívott történélünk két legesztelenebb háborúját – egyre többen megkérődőjelezték az emberi természet ésszerű jellegét. Habár Nietzsche már jóval korábban éles kritikával illette a racionalitás koncepcióját (Russell, 1994), a témakör tudományos jellegű vizsgálatáig Simon és az öt követő kutatók színre lépéséig kellett várni, akik nem csupán „puha” filozófiai érveket sorakoztattak fel, hanem a döntésmélet „kemény” kísérleti módszereivel is rávilágítottak az emberi racionalitással kapcsolatos problémákról.

Simon úgy vélt, az egyének a normatív modelek által diktált formális racionalitás szabályszerűségeit döntéseik során gyakran áthágják, amelynek oka egyrészt a valóság komplexitása, másrészt a döntéshozó kognitív korlátai. Elméleti szempontból ezért megkülönböztette a szubsztantív és procedurális racionalitást. Az első azt vizsgálja, hogy „az emberek milyen mértékben választják a megfelelő cselekvési módokat”, míg a második arra irányul, hogy „a cselekvések megválasztása során alkalmazott eljárások – az ember kognitív képességeit és korlátait tekintve – mennyire hatékonyak” (Simon, 1982). A Simon és követői által felvetett problémák és módszertani megközelítések nagyban hozzájárultak a kognitív pszichológia fejlődéséhez, amelynek eredményei napjainkra már a közgazdaságtan korábbi elképzeléseit is egyre inkább átírják a homo oeconomicusra vonatkozóan.
2.5.1.1. Az alternatívák feltárásának nehézsége

Habár Simon a klaszikus közgazdaságtan racionalitás felfogásához hasonlóan elfogadja, hogy az egyén alapvetően az ésszerű viselkedésre törekszik, azonban azt már vitatja, hogy mindez a gyakorlatban hibátlanul meg is valósulna. A probléma tulajdonképpen a döntés korábban tárgyalt definíciójából adódik. Azt mondta, a döntés általános értelemben véve nem más, mint választás a különböző alternatívák között. A választáshoz azonban mindenekelőtt fel kell tárni ezeket a lehetőségeket, amelyek – szemben a korábban elfogadott klasszikus nézettel – a legtöbb döntési helyzetben nem ismertek. Például gondoljunk arra, hogy valaki most végzett az egyetemen, és dolgozni szeretne. Ekkor nyilvánvalóan nem tudja az összes releváns állást megpályázni, hiszen keresése időben és térben korlátozott. Amikor a pályázó megtalálja az első olyan lehetőséget, amelynél a számára fontos szempontok adottak, Simon elmélete szerint nagy valószínűséggel befeléjezi a keresést. Ha végiggondoljuk, mindez teljesen ésszerűen hangzik, mégsem állíthatjuk, hogy a pályázó maradéktalanul teljesítené a racionalitás haszonnagyságát vonatkozó kritériumát, ugyanis a végéredményt illetően egy kielégően jó megoldással orvosolja a problémát az elérhető legjobb helyett.

Simon az elsők között hívtva fel a figyelmet arra a tényre, miszerint a döntéshozó már az ítéletalkotási folyamatot megelőzően meghatározza önmagának azokat a feltételeket, amelyek teljesülése esetén nem keres újabb alternatívákat a probléma megoldására. Ez az ún. aspirációs szint azonban nyilvánvalóan csak kivételes esetben esik egybe az optimalizálás kritériumaival (March és Simon, 1958).

Természetesen fel lehet hozni ellenérvként, hogy mivel az alternatívák feltárásának is komoly kognitív költségei vannak a döntéshozó számára, ebből adódóan a döntéshozó mégis racionalis, hiszen a kognitív költségeit optimalizálja (pl. Elster, 2001). Mindez azonban mégsem cárulja meg Simon eredeti felvetését, miszerint a döntés végeredménye nagy valószínűséggel nem lesz a lehető legoptimálisabb. A racionalitás elméleteinek képviselői Simon elméletét abból a szempontból is kritikával illetik, hogy a valóság komplex döntési helyzeteben nem lehet előzetesen és tudományos eszközökkel megállapítani azt az aspirációs szintet, amely a döntéshozó számára már kellőképpen kívántosnak tekinthető (Jungermann, 1983). Ugyanez a felvetés azonban alkalmazható lenne SEU modellel kapcsolatban is, amely esetében szintén a szubjektív helyzetészlelésnek jút főszerep.
2.5.1.2. A bizonytalanság és kockázat problémája

Simon másodszorban a klasszikus közgazdaságtan racionalitás koncepciójának a bizonytalanságra és a kockázatra vonatkozó, a valóságtól elrugaskodott hozzáállását is bírálja. Mint mondja, a mindennapi élet tipikus döntési helyzeteinek esetében nem csak az alternatívák feltárása nehézkes, de ugyanilyen problémát jelent a feltárt (és a fel nem tárt!) kimenetek bekövetkezési valószínűségeinek megbecslése is. Másképpen fogalmazva a döntéshozó a valóságban gyakran azt is tudhatja biztosan, hogy egy cselekvési alternatíva milyen jövőbeli állapotokhoz vezet. Mivel a bizonytalanság és kockázat témakörét korábban már tárgyaltuk, amelyek kapcsán kifejtettük az ide tartozó legalapvetőbb problémákat, e helyen nem kívánunk ismétlésésekbe bocsátkozni. A lényeget illetően azonban fel szerettük volna hívni a figyelmet arra, hogy a döntési helyzetek számos, előre nem látható buktatót hordoznak magukban, amelyek nem csak a tényállapotokra vonatkozó információhiányra, hanem a döntéshozó pszichológiai korlátaira is visszavezethetők. Simon eredeti problémafelvetése nyomán több kutatás is indult az említett kognitív korlátok feltárására, amelyek eredményeit a következő fejezetben részletezzük.

2.5.1.3. A preferencia-sorrendek összevetetlensége

A korlátozott racionalitás elmélete szintén felhívnja a figyelmet a döntéshozók preferencia-sorrendjére vonatkozó anomáliákra. A klasszikus redukcionista megközelítés ugyanis nem csak a döntési alternatívák feltárásán és a hozzájuk kapcsolódó bizonytalanság kérdésein lép át elegánsan, de azzal sem foglalkozik különösebben, hogy az egyes alternatívák várható kimenetei többnyire nem ugyanabban a dimenzióban helyezkednek el, ezáltal csupán nehézkesen hasonlíthatók össze. Képzeljük el például, hogy valaki ingatlanvásárláson töröl a fejét. Egy lakás előnyeit és hátrányait nehéz lehet összevetnie egy családi ház által kínált előnyökkel és hátrányokkal, különösen, ha figyelembe veszünk olyan paramétereket, mint az elrendezés, környék, árfektivitas, kényelem, munkahelyhez és iskolához való távolság, valamint a finanszírozási lehetőségek. Az egyik dimenzióban mutatkozó előnyök nehezen hasonlíthatók össze egy másik hátrányaival, ezáltal a preferencia-sorrend felállítása komoly kihívást jelenthet. Simon kritikája nyomán a döntésméletben külön névvvel is illetjük az ilyen szituációkat, amelyeket többkritériumos döntési helyzeteknek nevezünk (Zoltayné, 2005).
2.5.2. Az Allais-paradoxon és a kilátáselmélet13

Képzeljük el, hogy a következő két lehetőség közül kell választani:

\begin{itemize}
\item \textit{(A1) 50\%-os valószínűséggel nyerhetünk egy Angliát, Franciaországot és Olaszországot is átszelő háromhétes vakációt;}
\item \textit{(A2) Biztosan nyerünk egy egyhetes angliai nyaralást.”}
\end{itemize}

A kutatások azt mutatják, hogy a legtöbb kísérleti személy (78\%) ebben a döntési szituációban az (A2) alternatívát választja, azaz veszteségkerülő magatartást tanúsít. A második kísérleti helyzetben ugyanazok a résztvevők a következő két alternatívá közül választhattak (Kahneman és Tversky, 1979, ford. Szántó, 2011:18):

\begin{itemize}
\item \textit{(B1) 5\%-os valószínűséggel nyerhetünk egy Angliát, Franciaországot és Olaszországot is átszelő háromhétes vakációt;}
\item \textit{(B2) 10\%-os valószínűséggel nyerhetünk egy egyhetes angliai nyaralást.”}
\end{itemize}

Ebben a helyzetben a kísérleti személyek többsége (67\%) az első (B1) alternatívát részesíti előnyben. Allais úgy érvel, hogy azok a személyek, akik az első esetben (A1) alternatívát választották, a második esetben pedig (B2) alternatívát preferálták, felrúgják a játékelmélet függetlenségi axiómát. Tagadhatatlan, hogy az (A2) szituáció 100\%-os bekövetkezési valószínűsége (az ún. bizonyossághatás miatt) szubjektív szempontok alapján nem vethető össze a (B2) szituáció 10\%-os bekövetkezési valószínűségével, azonban nem hagyhatjuk figyelmen kívül annak tényét sem, hogy a (B1) és (B2) döntési szituáció megfeleltethető matematikai értelemben az (A1) és (A2) válaszási helyzet 1:10 arányú tükörképének, ebből adódóan a racionalis döntéshozóknak mindkét helyzetben azonos módon kellene eljárnia.

13 A prospect theory kifejezést a honi szakirodalom időnként lehetőségelméletnek is fordítja.
Allais – akár csak jóval korábban Bernoulli és Bayes – paradoxonjában ismételten felhívtá a figyelmet az emberi ítéletalkotás szubjektív sajátosságára, amely teljesen ellentmond a játékelmélet normatív modelljében felvázolt racionális döntéshozó axiómájának. Tversky és Kahneman szintén ezen az úton haladva alkotta meg az ún. kilátásméletet, amely a viselkedéstudományi döntésmélet mág egyik legfontosabb alaptételévé nőtte ki magát, mivel előg nagy pontossággal képes előre jelezni a kockázat mellett hozott döntések irányait.

A 19. század második felében az érték fogalma mellett és helyett egyre inkább alkalmazni kezdtek a hasznosság fogalmát is a főirányú közgazdaságtanban, amely egyrészt megoldást kínált a pénzhez fűződő szubjektív anomáliák áthidalására, másrészt – Weber közreműködésével – alternatív elméleti magyarázatot szolgáltatott a homo economicus nem racionális döntéseit illetően. Tversky és Kahneman kilátásmélete szintén a döntéshozatali anomáliákra koncentrál, azonban érdeklődésük fókuszában (eltérően a játékelmélet és a SEU modell koncepciójától) nem a hasznosságfüggvényt, hanem az újra felfedezett és leporolt értékfüggvénynél áll, ennek elsődleges okaként a szerzők a percepciókutatások eredményeit jelölők meg többek között Helson (1964) munkájára hivatkozva, miszerint az egyén a döntései folyamán inkább képes különböző referenciapontok között észlel eltéréseket (értékbeli különbségekre) hagyatkozni, semmint abszolút vagy idealizált állapotokat leképezni a valóság szintjére. Másként fogalmazva: míg az értékfüggvényn különböző pontjai nem csak egymással vethetők össze, hanem egy kiindulási helyzettel is, addig a hasznosság esetében az abszolút hasznosság meghatározása csaknem lehetetlen. Utóbbi különösen a többkritériumos választások esetén igaz, hiszen ahogyan Simon (1957) is kifejtette, az ilyen helyzetekben a döntési alternatívák és azok kimeneteléi között éppen azért nehéz választani, mert a különböző paraméterek nem egy dimenzióban helyezkednek el. Ráadásul elméletük szerint – amely alternatív magyarázatot szolgáltat Allais fentebb bemutatott paradoxonjára vonatkozóan is – az egyének gyakran alábecsülik azokat a kimeneteket, amelyek valószínűek, szemben azokkal, amelyek biztosan bekövetkeznek (Tversky és Kahneman, 1979). A szerzők ezért azt javasolják, hogy ne a hasznosságfüggvényn egyes kimenetelhez rendelt valószínűségeket vegyük alapul a kockázat mellett meghozott döntések predikcióinak eseteiben, hanem erre a célra inkább döntési súlyokat használjunk. Ezzel a módszerrel ugyanis kiegyenlíthetővé válik a döntéshozók ítéleteiben megfigyelt torzítás, amely a kisebb valószínűségeket szisztematikusan felnagyítja, a nagyobb valószínűségeket pedig alábecsüli.
A szerzők bevezetik a keretezési hatás fogalmát is. Ezalatt azt értik, hogy egy probléma interpretációja nagymértékben hatással lehet a döntéshozatali folyamatra. Ahogyan említettük, a probléma „egy észlelt jelen idejű állapot megváltoztatását vagy fenntartását célzó kielégítetlen szükséglet” (Zoltayné, 2005:17). Mindez pedig ismét a döntéshozó szubjektivitásának jelentőségét emeli ki. Tversky és Kahneman szerint amennyiben az egyén egy korábban meghatározott referenciaponthoz képest nyereségnek észlele egy cselekvési alternatívát, illetve annak kimenetelét, akkor többnyire kockázatkerülő módon viselkedik. Ezzel szemben, ha a döntéshozó veszteségként fogja fel a kimenetet, akkor pedig inkább hajlamos lesz kockázatot vállalni.

A kilátáselmélet a döntési folyamatot két fő szakaszra bontja. Az első szakasz az ún. szerkesztési fázis, amikor is az egyén a döntési probléma komplex elemeit egyszerűbb összetevőkre redukálja. A döntéshozó ennek folyamán értelmezi a problémát; feltárja a kockázatos és a kockázatmentes elemeket, valamint a domináns kimeneteket, amelyeket kiemel, ezáltal a többi háttérbe szorítja; kijelöli a referenciapontokat, amelyekhez képest dönteni fog; kerekítéseket végez, vagy éppen elsiklik az alacsony valószínűséggel bekövetkező kimenetek felett, és így tovább. A folyamat második szakaszában pedig megtörténik a döntés az előzőleg sorrendezett és kiértékelhető kilátások alapján, amelynek során Tversky és Kahneman szerint az egyén azt az alternatívát preferálja, amely nagyobb értékkel rendelkezik.

A szerkesztés és a kiértékelés azonban a döntéshozó kognitív torzításai miatt az esetek túlnyomó többségében nem a játékelmélet tiszta racionalitás modellje alapján történik. Tversky és Kahneman (1979, ford. Szántó, 2011:119) végkövetkeztetése szerint „számos szituációban […] a döntéshozónak nincs valódi esélye arra, hogy észrevegye, hogy a preferenciája megsértheti azokat a szabályokat, amelyeket követni szeretne. Ilyen körülmények között a kilátáselméletből következő anomáliák nagy valószínűséggel megjelennek a döntéseiben”. Habár Tversky és Kahneman kilátáselmélete alapkoncepcióját tekintve annyiban hasonlít Neumann és Morgenstern játékelméletéhez, hogy az egyes kimenetekhez rendelt valószínűségek mindként esetben ismertek, ilyen módon pedig a későbbi munka is operálhatna a kockázati döntések klasszikus modelljeivel, mégsem ezt láthatjuk. A két megközelítés alapvető különbséget mutat a tekintetben, hogy míg a játékelmélet normatív módon meghatározza azokat a kritériumokat, amelyek szerint a racionális döntéshozónak el kellene járnia, addig a kilátáselmélet deskriptív módon azzal foglalkozik, hogy az egyének miként döntenek a valóságban. Ez a nézőpontbeli különbség,
illetve a kapott eredmények pedig további kutatásokat inspiráltak az emberi döntéshozatalra vonatkozóan, amelyekről a következő részben fogunk beszélni.

Összefoglalás

3. A DÖNTÉSHÖZATALT BEFOLYÁSOLÓ PSZICHOLÓGIAI TÉNYEZŐK

Az előző fejezetben bemutatott prekoncepciók alapvető jelentőséggel bírnak az emberi döntések tudományos vizsgálatai során. Habár néhány teoretikus továbbra is a racionális döntések elméleteinek helytállósága mellett kardoskodik, ma már többnyire elfogadott ténynek számít, miszerint a klasszikus közgazdaságtan emberképére vonatkozó korábbi elképzeléseink a racionalitást illetően nem voltak maradéktalanul pontosak (pl. Hámori, 2003). Mivel a pszichológia empirikus alapokon nyugvó kutatási eredményei azt mutatják, hogy az egyének gyakran nem a formális logika útján jutnak el döntéseikhez, ezért a pontosabb rálátás érdekében javasolt számba vennünk azokat a tényezőket, amelyek a humán információfeldolgozási folyamatot – és ennek kapcsán a problénamegoldást, valamint a döntések irányait is – befolyásolják. A következőkben erről a témáról fogunk beszélni.

3.1. Az emberi információfeldolgozás kognitív modelljei

Noha a múlt század első harmadában az emberi észleléssel és problénamegoldással már az alaklélektan képviselői is foglalkoztak, a 20. század első felét meghatározó pszichoanalitikus iskola és a behaviorizmus követői kevesebb figyelmet szentelték az említett kérdésnek. Ezt az úrt az ’50-es évektől kibontakozó kognitív irányzat kívánta betölteni, amely főként az emlékezethez, az észleléshoz, a nyelvi jelenségekhez, a gondolkodáshoz és végül, de nem utolsó sorban a problénamegoldáshoz kapcsolódó nehézségekre koncentrált.

3.1.1. Ellis és Hunt információfeldolgozási modellje

Ellis és Hunt (1983) modelljének középpontjában a memória és a benne tárolt ismeretek állnak, ugyanis a szerzők véleménye szerint itt található mindaz, ami a személységünk meghatározza. A memória funkciója az emlékezés biztosítása, amely a kódolás, a tárolás és az elöhívás során lehetővé teszi, hogy az új ismereteinket szintetizáljunk a korábbiakkal. Mint az alábbi ábrán láthatjuk, Ellis és Hunt a problémamegoldást az információfeldolgozási folyamat szerves részének tekinti. A problémamegoldás effajta modellszintű integrálása azért érdekes számunkra, mert ahogyan az első fejezetben kifejtettük, a döntéshozatalt a

16 Neisser a szekvenciális feldolgozás helyett azt hangsúlyozta, hogy az információfeldolgozás elsősorban ciklikus jellegű, amelynek központjában a sémák állnak.
problémamegoldás részének tekinthetjük, ebből adódóan összefüggés áll fenn az információfeldolgozás későbbiekben bemutatásra kerülő defektusai és az ítéletalkotási folyamat között.

Modelljük alapján az érzékszervek felől érkező ingerek először az ún. érzékszervi tárba kerülnek. Ennek funkciója, hogy a külvilágból származó nyers (nem értelmezett) adatokat időlegesen befogadja, és addig tárolja, amíg a feldolgozás el nem kezdődik. Az adatok az érzékszervi táróból az alakfelismerésért felelős modulba kerülnek, amely közvetlen kapcsolatban áll a rövid és a hosszú távú memóriával. E helyen történik meg a kategorizáció, melynek során a nyers adatok a hosszú távú memóriában eltárolt korábbi sémák összevetésével, illetve ezekhez történő illesztésével jelentést hordozó információvá alakulnak át. A folyamatot szükség van a figyelemre, amely megfelelően irányítja a feldolgozást,

4. ábra: Ellis és Hunt információfeldolgozási modellje (1983)

illetve a rövid távú memóriára, ahol az értelmezett információtömbök és a hozzájuk kapcsolódó kognitív műveletek megkezdődnek. A következő lépés a problémamegoldás fázisa, ahol a már részben feldolgozott információk szélesebb körű összevetése történik meg a tanulás és tapasztalat által kialakult komplex mentális reprezentációkkal, illetve ezek hiányában új modellek jönnek létre. Az egyén a folyamat záróaktusaként valamilyen következtetést von le a szituációra vonatkozóan, amelyet társas helyzetben a nyelv segítségével közöl.

3.1.2. Wickens információfeldolgozási modellje

5. ábra: Wickens információfeldolgozási modellje

3.1.3. Rasmussen információfeldolgozási modellje

Az emberi információfeldolgozás általános mechanizmusát a fenti két megközelítés kiválóan szemlélte, mégis megemlítjük Rasmussen (1983) modelljét is, mert ahogyan Izsó (2004) megfogalmazza, „igen elónyen alkalmazhatónak bizonyult általában az ember-gép rendszerek […] tanulmányozásában”, illetve ezen túlmenően közvetlenül kapcsolódik Simon másik jelentős felvetéséhez, nevezetesen a jól és rosszul strukturált problémakategóriákról vonatkozó megoldások sematizálásához is. Rasmussen tulajdonképpen a korábban már bemutatott webéri hagyományokból indul ki, hiszen modelljét úgy is felfoghatjuk, mint annak szemléltetését, hogy a célracionális elveit követő egyén a helyzetből függően milyen viselkedési módozatok segítségével valósíthatja meg elképzeléseit. Ennek kapcsán három lehetséges megközelítést ajánl. Az egyszerű, mindennapokban rutinszerűen ismétlődő problémákat az ember az ún. gyakorlottságon alapuló viselkedés segítségével oldhatja meg, melyek esetében az automatizmusé a főszerep. Amennyiben az egyén nem mechanikusan ismétlődő, hanem valamilyen egyedi, de jól strukturált/zárt típusú problémával találkozik, amely logikai szabályokkal megfelelően definiálható, akkor a szabályokon alapuló viselkedés lehet hatékony, míg ha rosszul strukturált/nyitott típusú problémával kerül szembe, akkor pedig a tudáson alapuló viselkedés segítségével oldhatja meg a helyzetet.

6. ábra: Rasmussen információfeldolgozási modellje

3.1.4. A tudás és a szakértelem szerepe az információfeldolgozásban

Mielőtt azonban jellemeznénk az egyes szinteket, érdemes tisztáznunk a sémák fogalmát, amelyre Mérő az osztályozását alapozza. A kognitív pszichológia egyik legjelentősebb előfutárának tekintett Bartlett (1932) szerint a sémák a tudás olyan alapegységei, amelyek az egyén korábbi tapasztalatait fűzik össze. A mai definíciók érdemben alig változtak. Székely (2003:290) meghatározásában például a sémák „olyan kognitíív rendszerek, ahol az egyes ingerekre (pl. egy tárgyra, fogalomra, eseménysorra) vonatkozó ismeretek (pl. tulajdonságok, azok összefüggései) szerkezetbe szerveződnek, ahová az új tapasztalatok beépülhetnek, s ahonnan a kapcsolódó információk előhívhatók”-t. Mérő az előzőekhez még hozzáteszi, hogy a megismerési sémák aktívan irányítják az észlelést és a gondolkodást, miközben a megismerő információk alapján maguk is folyamatosan módosulnak. Mérő úgy véli, egy adott szakterületre vonatkozó tudásanyag az említett sémakészletek számával és komplexitásával jellemezhető, amely alapján a kezdők, a haladók, a mesterjelöltek és a szakértők szakmai fejlődési szintjeit különbözteti meg egymástól.
A kezdők nagyon kevés szakmai sémával rendelkeznek, amelyek ráadásul nem releváns, többnyire hétköznapi tapasztalatokból származnak. Ilyen módon szakmai kommunikációjuk nehékes, a specifikus problémamegoldásuk pedig erősen korlátozott. A haladók már birtokában vannak az alapvető szakmai ismereteknek, sémakészletük néhány százra tehető.

<table>
<thead>
<tr>
<th>Szempontok</th>
<th>Kezdő</th>
<th>Haladó</th>
<th>Mesterfelült (szakértő)</th>
<th>Nagymester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kognitív sémák mennyisége (a szint definíciója)</td>
<td>néhány 10</td>
<td>néhány 100</td>
<td>néhány 1000</td>
<td>néhány 10000</td>
</tr>
<tr>
<td>Kognitív sémák minősége</td>
<td>bonyolult, hétköznapi, inadekvát</td>
<td>egyszerű, adekvát, nem kielégítő</td>
<td>bonyolult, adekvát, szakszerű</td>
<td>komplex analógiák</td>
</tr>
<tr>
<td>Problémamegoldás módja</td>
<td>logikus, a hétköznapi logika szerinti</td>
<td>logikálatlan, mert kevert</td>
<td>logikus, analí- tikus, a szak- mai logika szerint</td>
<td>képi, szintetikus, gyakran transzlogikus</td>
</tr>
<tr>
<td>Szakmai kommunikáció minősége</td>
<td>szakszerűtlen, hétköznapi intuitória alapoz</td>
<td>görcsös, hullámzó színvonalú</td>
<td>szakmailag korrekt, formális, tárgyszerű</td>
<td>mélyen intuitív, informális, áttekintő</td>
</tr>
<tr>
<td>Szakmai nyelve</td>
<td>nincs</td>
<td>nehézkes, “idegenes”</td>
<td>szabályszerű, kifejező</td>
<td>"anyanyelvi", képszerű</td>
</tr>
<tr>
<td>Gondolkodási stílus</td>
<td>intuitív</td>
<td>kevert, ezért gyakran logikálatlan</td>
<td>racionális</td>
<td>intuitív</td>
</tr>
<tr>
<td>Tudatosság szintje</td>
<td>még nem tudja, mit nem tud</td>
<td>tudja, mit nem tud még</td>
<td>tudja, mit tud, és honnan</td>
<td>tudja, mi a helyénvaló, de nem tudja, honnan</td>
</tr>
<tr>
<td>Érés ideje</td>
<td>-</td>
<td>néhány év</td>
<td>kb. 5 év</td>
<td>minimum 10 év</td>
</tr>
<tr>
<td>Mi kell hozzá?</td>
<td>érdeklődés, némi tanulás</td>
<td>folyamatos tanulás</td>
<td>képzettség, iskolai végzettség</td>
<td>tehetség</td>
</tr>
</tbody>
</table>

7. ábra: A szakmai szintek jellemzői\(^{20}\)

Itt kívánjuk felhívni a figyelmet arra, hogy a fentebb bemutatott szakmai fejlődési szintek rendszertani kategóriái egyrészt idealizált prototípusokat írnak le, amelyek a mindennapokban csak ritkán jelennek meg tiszta formában, másrészt pedig az egyes teoretikusok esetenként jelentős eltéréssel határozzák meg a különböző fejlődési szinteken álló személyekkel szemben támasztott követelményeket. Amíg például Mérő a szakértővé válás érési idejét öt évben jelöli meg, addig John R. Hayes (1978 és 1990 in Gladwell, 2005) szerint legalább kétszer ennyi időt vesz igénybe ez a folyamat. Hayes példának Mozart zenei munkásságát hozza, aki vitathatatlan zenei tehetsége ellenére is 17 éves kora körül írta az első olyan művet, amit a Schwann-katalógusban21 is jegyeznek: magyarán több mint tíz év gyakorlásra volt szüksége ahhoz, hogy zeneileg beéjjjen. A szakirodalom ilyenfajta áttekintése után úgy tűnik, a szakértő és a „nagymester” fogalmi szinten gyakran egybeolvad, és ugyanarra a magas szakmai ismeretekkel rendelkező személyre utal. A továbbiakban ezért szakértő alatt a legmagasabb szakmai tudást képviselő személyeket fogjuk érteni.

Számunkra a fentebb taglaltak pontos következményekkel bírnak, hiszen a tacit jellegű szakértői tudás az azt jellemző nagyszámú és komplex sémakészlet miatt nem formalizálható, ebből adódóan még az adatbázis alapú döntéstámogató rendszerek legfejlettebb típusai sem alkalmasak az ilyen minőségű tudás megragadására és közvetítésére a felhasználók részére (Sántáné, 2007). A tacit jellegű tudás számítógépes rekonstrukciója elérhető, sokkal inkább megfelelnek a mesterséges intelligenciát alkalmazó rendszerek, amelyek azonban ma még kevésbé számítanak elterjedtnek. Ezek idővel jelentős szerepe tehetnek szert a döntéstámogatás területén, mivel a kutatások alapján a bizonytalanság és kockázat mellett meghozott döntések esetében a tacit jellegű tudás hatékonyabb problémamegoldást tesz lehetővé, mint az explicit jellegű (pl. Klein, 1999, Gigerenzer, 1991; Snowden, 1998; stb.).

3.2. Az emberi információfeldolgozás torzításai

A második fejezet végére eljutottunk addig, hogy meghatároztuk a racionális viselkedés normatív alapkritériumait, illetve rámutattunk arra, hogy a játékméletben lefektetett axiómákat a döntéshozók a mindennapokban gyakran megsértik. A jelenség hátterében húzódó okokról azonban mindeddig csak nagyon alakban ejtettünk szót, ilyen formán adások vagyunk a részletek bemutatásával. Azon túlmenően, hogy a fentebb bemutatott kognitív rendszerünk egyes komponensei (mint például a figyelem, a rövid és hosszú távú memória, stb.) önmagukban is korlátozott kapacitással bírnak – ezáltal esetenként megnehezíthető vagy

21 William Schwann által 1949-ben útjára indított zenei gyűjtemény, amely a legkiemelkedőbb klasszikus, jazz és popzenei alkotásokat foglalja magában.
lehetetlenné teszik a megfelelő feldolgozást –, a percepció folyamatában az egyén korábbi tapasztalatai is gyakran átértelmezik és sajátos jelentéstartammal ruházzák fel a külvilág jelenségeit (pl. Bruner, 1957; Neisser, 1967; Gregory, 1968; stb.). A harmadik fejezet elején bemutatott információfeldolgozási modelleket éppen azért bírálták többben, mert figyelmen kívül hagyják az egyén motivációit és érzelmeit, amelyek nyilvánvalóan jelentős mértékű hatással vannak az észlelésre, ebből adódóan a gondolkodásra és a problémamegoldásra is (Eysenck és Keane, 2003). A következőkben a humán információfeldolgozás legjellemzőbb defektusait vesszük számba annak céljából, hogy jobban megértsük, döntéseink kimeneteit milyen tényezők módosítják kisebb vagy nagyobb mértékben.

3.2.1. A heurisztikák

A hozzáférhetőségi heurisztikák ból származó korlátok

1. Könnyű felidézhetőség:
Az egyén egy esemény gyakoriságának becslését az esetek elérhetősége, hozzáférhetősége alapján véghi el. Emlékez azok az események, amelyekre könnyebbe visszaemlékezné, sokkal gyakoribbak tűnnek, mint azok az egyébként azonos gyakorisággal előforduló események, amelyek emlékképeit nehezebb előhívni.

2. Elérhetőség:
Az egyéneket korlátozza az események gyakoriságának megítéléseben, hogy memóriastruktúráik hogyan hatnak a keresési folyamatra.

3. Látszolagos korreláció:
Az emberek általában felülbecsülnek két összekapcsolódó esemény valószínűségét a látszolagos egybeesések miatt, amelyek könnyen felidézhetők a tapasztalatok vagy a társadalmi hatás alapján.

A reprezentatívhez heurisztikák ból eredő korlátok

4. Az előzetes valószínűségek mellőzése:
Az egyének nem veszik figyelembe az előzetes valószínűségeket, amikor egy esemény valószínűségét értékelik, ha bármilyen más lefröf információt kapnak, még ha azok irrelevánsak is.

5. A mintanagyságra való érzékenység:
Az egyének gyakran esnek abba a hibába, hogy nem veszik figyelembe a minta méreténe szerepét a mintából nyert információk megévecsegő ségétől megítélésekor.

6. A véletlen félreértelmezése:
Az emberek azt várják, hogy a véletlenszerűen generált adatok véletlenszerűen néznek majd ki, még akkor is, ha a sor tűl rövid ahhoz, hogy a véletlenszerűség statisztikailag igazolható legyen.

7. Az átlaghoz való visszatérés:
Az egyének nem veszik figyelembe azt a tényt, hogy az extrém események általában visszatérnek az átlaghoz bizonyos mennyiségi próbálkozás után.

8. Az egybeesésből eredő téves következtetés:
Az egyének tévesen úgy ítélik meg, hogy a konjunktív események (két esemény együttes) bekövetkezése valószínűbb, mint egy sokkal összetettebb eseményé, amelynek a konjunktív esemény csak egy alrendszere.

A rögzítési és kiigazítási heurisztikák ból származó korlátok

9. Elégtelen kiigazítás:
Az egyének egy kezdeti értékkből kiindulva készítenek értékbecsléseket (amelyek korábbi eseményekből, véletlen értékkelből vagy bármely elérhető információból származnak), és jellemzően nem igazítják ki ezeket, amikor a végző érték megállapítható.

10. Konjunktív és diszjunktív események:
Az egyének a konjunktív események valószínűségét felülbecsülnek, a diszjunktív eseményeket pedig alábecsülnek.

11. Túl nagy önbinzalom:
Az emberek túl szűk konfencia-intervallumot állapítanak meg a becsléseik során, ami nagyfokú önbinzalmat tükrözik, amit a becsült mennyiségekhez kapcsolódó tudásunk nem indokol.

Két további általános korlát

12. A megerősítési csapadék:
Az emberek gyakran megerősítő információkat gyűjteni, amelyekről azt gondolják, hogy igazak, és mellőzik a döntésüknek ellentmondó információk keresését.

13. Az utólagos előrelátás és tudás átka:
Miután már tudják, hogy egy esemény bekövetkezett-e vagy sem, az emberek felülbecsülük annak fokát, hogy mennyire látták helyesen előre a tényleges kimenetet. Ráadásul nem veszik figyelembe, hogy olyan tudással rendelkeznek, amely esetleg másoknak nincs a birtokában, amikor mások viselkedését próbálják előre jelezni.

8. ábra: A heurisztikák leggyakoribb típusai

Az alábbiakban további olyan torzításokat mutatunk be, amelyek nem szerepelnek Bazerman összefoglalójában, azonban a kutatások tanulsága szerint legalább annyira jelentősek az emberi döntéshozatal defektusainak megértésében, mint a fenti példáink.

3.2.1.1. A keretezési hatás
Többször hivatkoztunk már Kahneman és Tversky munkásságára, akik a kockázat melletti döntések klasszikusainak számítanak. Ők írják le az ún. keretezési hatás jelenségét, miszerint egy probléma megfogalmazása önmagában is hatással lehet a döntéshozatali folyamatra. A keretezési hatás rámutat, egyáltalán nem mellékes, hogy egy döntési helyzet kimenetét a döntéshozó nyereségesnek vagy veszteségesnek észleli. Egy vizsgálat során Kahneman és Tversky (1984, in Hámori, 2003) arra kértek kísérleti személyeket, döntsék el, egy képzeletbeli járvány esetében az alábbiak közül melyik egészségügyi program szerint járnának el: (A) 600 betegből 200 ember élete biztosan megmenthető, vagy (B) 1/3 valószínűséggel megmenthető 600 beteg élete, azonban 2/3 valószínűséggel egyetlen túlélő sem lesz. A szerzőpáros arra a meglepő eredményre jutott, hogy noha a két program abszolút értelemben azonos (mindkét esetben 200 ember élne túl a járványt), mégis a kísérleti személyek 72%-a az első alternatívát választotta, amit az egyének veszteségkerülő hajlamával magyaráztak. Ezt a vizsgálatot más formában is elvégezték, hasonló eredményekkel. Mindez azért érdekes, mert úgy tűnik, az egyének hétköznapi döntéseik során megsértik a játékelmélet racionális döntéshozójával szemben támasztott követelményeket. A kísérlet eredményei azt bizonyítják, hogy a problémák interpretálása jelentős mértékben képes befolyásolni a döntéshozatal irányát még azokban az esetekben is, amelyek a várható hasznosság tekintetében teljesen azonos tartományba esnek. Kahneman (2013) szerint mindez a „gyors gondolkodás” heurisztikus egyszerűsítő mechanizmusainak köszönhető.

3.2.1.2. A birtokhatás és a mentális könyvelés
Ugyancsak Tahler (1985) írja le a mentális könyvelés jelenségét, amely Tversky és Kahneman (1984) fentebb említtett keretezési hatásából indul ki. Tahler szerint az emberek a nyereséget és a veszteséget kontextus függő módon kezelik, amely a döntéshozatalra is hatással van. Például ugyanazért az italért egy elegáns báron az egyének általában többet hajlandók kifizetni, mint egy boltban, holott mindként esetben ugyanarról az italról van szó.

3.2.1.3. A nonkomplementaritási hatás
Robinson és Hastie (1985) megoldatlan emberölési ügyekről szóló leírásokat adott egyetemistáknak, akikről azt kérték, különböző bizonyítékok alapján becsüljék meg annak valószínűségét, hogy ki/kik lehetnek az elkövetők. A vizsgálati személyek egyik csoportjának figyelmét felhívta arra, hogy a különböző gyanúsítottak részére adott valószínűségeknek összege 1, míg a másik csoport nem kapott ilyen jellegű felvilágosítást. Az eredmények alapján a kutatók arra a következtetre jutottak, az egyének nem veszik kellőképpen figyelembe, hogy amennyiben egy rendszer valamely elemére vonatkozó ítéletünket megváltoztatjuk, akkor az milyen hatással van a rendszer többi elemére.

3.2.1.4. A Dunning-Kruger hatás

A bemutatott heurisztikák torzító hatásai nem csupán a normatív logikai műveletek feldolgozása során jelentkeznek. Például Tajfel és munkatársai (1971) szerint a társas megismerés folyamataiban is ugyanazok a mechanizmusok lépnek működésbe, mint a fizikai valóság esetén, azaz másként fogalmazva a körülöttünk lévő emberekre vonatkozó ítéleteinket és a tőlük származó információkat ugyancsak egyszerűsítő eljárások segítségével értelmezzük, ami végső fokon befolyásolja döntéseink irányait is. Áttekintésünk ezért a szociálpszichológia releváns eredményeivel folytatjuk.
3.3. A döntéshozatal szociálpszichológiai aspektusai

23 Cooley szerint az elsődleges csoportokat a „szentől-szembe” történő szoros kapcsolatteremtés és együttműködés jellemzi, amelybe a család, a barátkozók és a közeli munkatársaság tartoznak, amik jutalmazó és büntető mechanizmust képezben belül hatnak a személyiségre, míg a másodlagos csoportok valamilyen nagyobb társadalmi szereződésnek köszönhetik létezésüket, és többnyire hatásuk lényegesen kisebb. Dunbar (1998, in Weinschenk, 2011) úgy vél, az ember esetén a társas kapcsolatok felső korlátja 150 fő körüli lehet.

támogatják egymást, lehetséges következtetni a várható viselkedés irányaira (pl. Forgács, 2009).26

Az attitűd szerepe ugyancsak felértékelődhet olyan esetekben, amikor az egyén hiányos ismeretekkel rendelkezik. Például Halász (1980) szerint az emberek intenzív és szélsőséges irányultsággal bíró attitűdjeik hatására akkor is gond nélkül fogalmaznak meg határozott véleményeket, ha nem rendelkeznek kellő ismerettel az érintett problémát illetően. Az egyén attitüdtárgyakra vonatkozó negatív és pozitív irányultságai tehát az információfeldolgozás során súlyozhatják az egyes szempontokat másokkal szemben, ezáltal pedig torzíthatják az objektív látásmódot és a döntéshozatalt27 (Csepeli, 2006).

Mayo (1933) eredetileg azt a hipotézist kívánta megvizsgálni, hogy a jobb munkakörülmények vajon jobb teljesítményt eredményeznek-e a dolgozóknál. Először a két változó között korrelációt tapasztalt, azonban legnagyobb meglepetésére a munkavállalók teljesítménye akkor is tovább nőtt, amikor a körülmények színvonalát nem változtatták, vagy éppen lerontották. Mayo a jelenség okainak feltárása során rájött, hogy a dolgozók teljesítményére

26 Forgács (in Forgács A., Kovács Z., Bodnár É., Sass J. 2011) szerint az attitüdtárgyra vonatkozó érzelmek és vélemények kovarianciája nem csak a hétkőznapi tapasztalatok szintjén érhető tetten, hanem laboratóriumi körülmények között is igazolt jelenség.

olyan szociálpszichológiai tényezők is jelentősen hatnak, mint például az emberséges bánásmód és a kitüntetett figyelem.

Asch (1956) vizuális percepciókutatásnak álcázott vizsgálata során olyan kártyapárokat mutatott be a kísérleti személyeknek, amelyik egyik tagján egy mintavonal volt látható, míg a másik kártyalapon három különböző vonal, amelyekből egy azonos hosszúságú volt a másik kártyalapon látható mintavonallal. A feladat az volt, hogy a kísérleti személynek meg kellett határoznia az egyébként könnyen felismerhető helyes megoldást egy 9-10 főből álló csoport többi tagjának véleményét ismerve, akik azonban beavatott személyek voltak, és az első néhány helyes válasz után előre megtervezetten kollektív módon rossz ábrát jelölték meg. Asch azt tapasztalta, hogy a kísérleti személyek alig negyede tudta magát függetleníteni a többiek ítéletétől. A kísérletek rámutattak, hogy a csoportnyomás nem elhanyagolható befolyásoló szerepére az egyén véleményformálása és döntéshozatala kapcsán.

Milgram (1963) engedelmesesség vizsgálatkutatásait Asch eredményei és a második világháborúban súlyos kegyetlenségeket végezett, és a második világháborúban született miután megkérdezték, miért cselekedtek szörnyűségeket, gyakran a kiadott parancsra hivatkoztak. Milgram úgy tájékoztatta a kísérleti személyeket, hogy a kutatás a büntetés és tanulás összefüggéseit kívánja feltárni. A vizsgálatban három személy volt jelen egy időben: a kísérletvezető és két alany, akik közül az egyik beépített ember volt. A vizsgálat során az igazi kísérleti személy egy pult mögé ült, amin összesen harminc kapcsolót helyeztek el. Ezek a kapcsolók arra voltak hivatottak, hogy amennyiben a válaszokat adó beépített ember hibázik, akkor a kísérletvezető utasításának megfelelően a kísérleti személy egyre nagyobb mértékű áramütéssel büntesse a másikat, akinek csupán a hangját hallotta. Természetesen a beépített ember nem érte valós áramütés, azonban az idő előrehaladásával egyre több helytelen választ adott, ezért a kísérletvezető folyamatosan „növeltette” a kísérleti személlyel a feszültség mértékét. A kapcsolók feletti számok alapján a kísérleti személy mindig pontosan tudta, mekkora áramütést mér a válaszadóra. A beépített ember már a 6-os kapcsolónál (90 V) félszögletesen jelzette a fájdalmát, a 8-asnál (120 V) kiabált, és mire a 12-esnél (180 V) értek, közölte, képtelen elviselni a további fájdalmat. Ennek ellenére a kísérletvezető a kísérleti személyt a feszültség további emelésére utasította. A bizarr eredmények szerint a kísérleti személyek 62%-a végrehajtotta a vezető utasításait.
Az említett kutatások zavarba ejtő anomáliákat tártak fel, amelyek azt mutatják, társas helyzetekben sem okvetlenül a „tiszta ész” hatja át döntéseinket. Mindez azért volt érdekes fejlemény, mert még például a neves szervezetkutató, Barnard (1938) is úgy vélt, a nem racionális egyén cselekvéseit éppen a szervezet képesek kiegyensúlyozni és a racionális irányába terelni hierarchikus és bürokratikus működésükből adódóan. E kaleidoszkóp-szerű áttekintésünk remélhetőleg jól érzékeltei, a döntéshozatal mechanizmusainak megértése nem lehet teljes a szociálpszichológiai aspektusok számbavétele nélkül.

3.3.1. Az egyén és a csoport

3.3.1.1. A csoport fogalma

28 Vegyük észre, hogy Bakacsi kiemeli a „cél” fogalmát, amelyről még az első fejezetben elmondottuk, hogy mind a szervezet, mind pedig a problémamegoldás és döntéshozatal különböző definicióiban központi helyzetben található. Ha tehát jól dolgoztunk, akkor erre a pontra érkezve valószínűleg egyre nyilvánvalóbb, hogy a disszertációban felmerülő fogalmak meglehetősen szoros kapcsolatban állnak egymással, és kifejtésünk azért jár nagy kihívással, mert akár miről is ejtünk szót, a pontos rálátás érdekében egy időben szükségünk lenne az összes ismeretre.

3.3.1.2. A munkacsoportok jellemzői

A munkacsoportok formális csoportok, amelyek eredendően valamilyen szervezeti cél érdekében jönnek létre, tagjai pedig előre lefektetett szabályok alapján különböző pozíciókat töltene be a szervezetben (Klein és Klein, 2008). Az informális csoportok viszont az egyének társas szükségletéből keletkező spontán szerveződések, amelyek sokszor valamilyen formális csoport tagjai között alakulnak ki. A szakirodalomban gyakran megkülönböztetjük egymástól a formális és informális csoportokat, de ezen között valójában nem húzható merev határval (Csepeli, 2006).

29 Miller (1956) szerint a rövid távú memória kapacitása 7 +/-2 egység körül mozog, Csepeli (2006) ebből indul ki a társas megismerés szóban forgó esetében.
nagyobb tagságú csoportok döntéseit nem feleltethetők meg a csoporttagok döntési átlagának. Habár a nagyobb csoportok több tudást akkumulálhatnak tagjaik által, azonban a fentiekből adódóan még a stratégiai problémamegoldásra szerveződő csoportoknál sem célravezető túl nagy létszám alkalmazása.

3.3.1.3. A csoporttagság feltételei és következményei a döntéshozatalban

A csoport által elfogadott értékek és normák közvetlenül kapcsolódnak a csoport céljaihoz, ezáltal alapvető feltételei a csoporttagság létrejöttének (Cartwright és Zander, 1980; Keeney, 1992). Amíg az értékeket tekinthetjük olyan kognitív tartalmaknak, amelyeket az egyén alapvetően jónak, helyesnek és kívánatosnak tart az életében (Farkas, 2004), és amelyek ilyen módon kihatnak a cselekvések irányaira (Forgas et al., 2009), addig a normákat inkább a társas érintkezés formáira és tartalmára vonatkozó írott és íratlan szabályoknak foghatjuk fel.

A csoportgondolkodás kialakulásának előzetes feltételei

1. Szoros kohézió
2. A csoport elszigetelése
3. A kutatás és értékelés módszeres eljárásainak hiánya
4. Utasításos vezetés
5. Erős stressz, kevés remény arra, hogy a vezető vagy más befolyásos személyek által favorizált megoldásnál jobbat találjanak

A csoportgondolkodás szimptomái

1. A sérthetetlenség illúziója
2. Kollektív racionalizáció
3. A csoport megkérdőjelezhetetlen moralitásába vetett hit
4. A csoporton kívüliek sztereotip jellegű megítélése
5. Nyomásgyakorlás az ellenvéleményt kifejtőkre
6. Öncenzúra
7. Az egyhangúság illúziója
8. Önjelölt gondolatrendőrök

A kudarcot eredményező döntéshozatal szimptomái

1. Az alternatívák nem teljes körű kutatása
2. A célok nem teljes körű kialakítása
3. A preferált alternatívával járó kockázat feltárásának elmaradása
4. A kiinduló fázisban elvetett alternatívák újraértékelésének elmaradása
5. Szegényses információszerzés
6. Szelektív torzítás az éppen rendelkezésre álló információk feldolgozásában
7. Váratlan események bekötése esetére vonatkozó tervek kidolgozásának elmaradása

9. ábra: A csoportgondolkodás jellemzői

A csoportgondolkodás kialakulásához szükség van egy további komponensre, amit Janis a véleményegyeztetésre való hajlamnak nevezi. Allport (1924, in Csepeli, 2006) korábban kimutatta, hogy a csoporttársak pusztá jelenléte már önmagában is az ítéletek konvergenciáját

Festinger (1957) arra mutatott rá, hogy minden olyan helyzet feszültség forrása lehet, amelyben az egyén saját véleményével össze nem egyeztethető, inkongruens információkkal találkozik. Szervezeti szinten a csoportos döntéshozatal legtöbb esetében a kognitív diszonancia minden feltétele adott, hiszen mind a stratégiai, mind pedig az operatív döntések komolyabb téttel bírnak, bizonytalanságot vagy kockázatot rejtene magukban, valamint igen ritka, hogy a csoport összes tagja azonos véleményt alkosszon egy-egy problémára vonatkozóan, amelyek egyenes következménye a jelentős mértékű stressz. A kognitív diszonanciával együtt járó erős pszichikai igénybevétel nehezen viselhető el hosszabb ideig, ezért az emberek többnyire a diszonancia redukciójára törekednek. Az ellentmondások kiegyenlítése csoportbeli alapvetően úgy érhető el, ha (1) az egyén saját véleményét a másik személyéhez/a csoport többi tagjához igazítja, (2) meggyőzi a másik személyt/a csoport többi tagját saját véleményéről, vagy (3) devalválja a sajátjától eltérő vélemények értékét. Ennél a pontnál előterbe kerül az információforrás presztízse és tekintélye, amely a kutatások szerint minél nagyobb értékkel bír az egyén számára, annál nagyobb meggyőző erővel jellemezhető31 (Asch, 1948). Az információforrás szubjektív értékelése azonban egyénenként jelentős eltéréseket mutat, amelynek megértésével ugyancsak behatóan foglalkoztak a szociálpszichológiában.

31 Asch (1948) presztízhatásnak nevezte ezt a jelenséget.
3.3.1.4. Tekintélyelvűség és dogmatizmus

Adorno, Frenkel-Brunswik, Levinson és Sanford (1950) A tekintélyelvű személyiség című összefoglaló kötetük aprópóját a zsidók ellen megnyilvánuló antiszemitizmus adta, amely felfogható a náci propagandista pszichológus, Jaentsch (1938) munkájának ellenpontjaként is. Míg például Jaentsch szerint a gyermekekkel szemben megnyilvánuló erőteljes szülői és nevelői konzisztencia, határozottság, stabilitás és magabiztosság az új generáció számára is követendő példaképet teremt, addig Adorno és munkatársai abból a freudi nézőpontból indulnak ki, hogy a gyermekkorban elszenvedett merev nevelési módszerek – mint például a szülői tekintélynak való szélsőséges alávetettség, illetve az ebből következő agresszió és cinizmus – deformálhatják a személyiséget. A defektusok az utóbbiak szerint felnőtt korban a bizonytalansággal és a kétértelmeséggel szembeni intoleranciához, valamint az előítéletek és sztereotípiák32 dominanciájához vezethetnek a személyészlésésben. Ezek hasonló funkcióval rendelkeznek a társas megismerésben, mint a heurisztikák a már korábban bemutatott logikai gondolkodásban, azaz leegyszerűsítik és felgyorsítják az információfeldolgozást és az ítélletalkotást, ezáltal pedig sokszor eltorzítják a saját és az idegen csoport tagjairól alkotott vélemények pontosságát (Síklaki, 2010). A sztereotípia fogalmát Lippmann (1922) vezette be, aki eredetileg a 20. század gyorsuló élettempójának számlájára írta azt a jelenséget, miszerint az emberek nem tudnak kellő figyelmet szentelni egymásnak, ezért társas ítéleteiket korábbi tapasztalataik által kategorizálják és leegyszerűsítik, így azonban gyakran pontatlanul mérik fel a velük érintkezésbe kerülő személyek tulajdonságait. Ma már tudjuk, mindez nem modernkori jelenség csupán, hanem az emberi viselkedés egyik általános tendenciája (Szabó, 2006). A kategorizálás valamilyen szembeöltő, könnyen megragadható tulajdonság mentén történik meg, amelyben az első benyomás nagysokfú dominanciával bír (Fiske és Neuberg, 1999). A sztereotípiák egyik iskolapelédjának számít a holdudvarhatás (Forgas, 1989), ami arra a jelenségre utal, miszerint az egyének gyakran ítélik meg társai általános tulajdonságait egyetlen pozitív vagy negatív jellemvonásuk alapján. Ez a hatás természetesen a saját és az idegen csoportok tagjainak észlelése során is kimutatható.

Adorno és munkatársai a tekintélyelvűséghez kapcsolódóan bevezetik az etnocentrizmus fogalmát is, ami a saját csoport felértékelését, illetve a csoporton kívüliek leértékelését jelenti. A szerzők szerint a tekintélyelvű személyiség további sajátos jellemvonásai közé tartozik a merev gondolkodásmód, konvencionális értékrrendszer, a gyengeség minden formája iránti erőteljes ellenszenv, a megtorlásra való hajlam, a folyamatos gyanakvás és a tisztelet az általa elfogadott tekintély irányába (Aronson, 2008). A tekintélyelvű személyiség megközelítése azért volt korszakalkotó, mivel teljesen újszerű kauzalitást tételezett fel a társas megismerésben: az észlelt negatív vagy pozitív jellemzőket nem kizárólag a csoport valóságos tulajdonságaihoz, hanem a megfigyelő személyiségéhez kötődott (Csepeli, 2006). Az említett személyiségjellemezők mérésére kifejezették az F-skálát, amely a fasisztoid attitűdöket kívánta beazonosítani. Habár a tekintélyelvűség effajta személyiségéről mindkívánatos, mind pedig etikai alapon, Adorno és kollégái nagyon lényeges kérdésre tapintottak rá, ami évtizedekre meghatározta a szociálpszichológia egyik legfőbb csapásvonalát.

Rokeach (1960) ugyancsak jelentős lépéseket tett annak irányába, hogy feltárja a külső források szerepét az egyén gondolkodásmódjára vonatkozóan. A megközelítésében alapvető fontossággal bír a kognitív stílus fogalma, amit eredetileg Allport (1937) vezetett be a pszichológiába, és alapkoncepcióján érdemben a későbbi szerzők sem változtattak (lásd pl. Kozhevnikov, 2007). Allport a kifejezés alatt a személyiségképződésnek szokásos vagy tipikus módjait értette, amelyek visszaköszönnek az emlékezet, a gondolkodás és a problémamegoldás során. Rokeach – szemben Adorno és kollégái munkájával – tehát a személyiségben felbukkanó rugalmatlanságokat már nem csupán pszichoanalitikus okokra vezette vissza, és nem is kizárólag politikai ideológiákkal szorosan kapcsolódott, hanem előtérbe helyezte az emberi problémamegoldást, ezáltal pedig a kognitív szociálpszichológia első generációjának egyik legjelesebb képviselőjévé vált (Hunyady, 2005). Az általa kifejlesztett dogmatizmus skála legfőbb analitikai eszköze egy hiedelem-ellenhiedelem

34 Példának okáért Adorno és munkatársai egybemosták a tekintélyelvű személyiséget és a fasiszt alapanyagát. Az általuk kifejlesztett méretes közösségek szélsőséges politikai tekintélyezreltség mérésére nem volt alkalmas, holott a jelenség az említett közegben is nyilvánvalóan kimutatható. Siegel és Siegel (1957) terepkísérlete rámutatott, hogy az F-skála eredményeit szituatív körülmények is nagyban befolyásolják.

35 Freud hatása azonban kétségtelenül tetten érhető Rokeach esetében is. Feltételezése szerint ugyanis a dogmatizmus hátterében ugyanúgy a gyermekkor szülőkkel szemben munkákló eljövülés és ambivalenciával állnak, mint Adorno elméletében.
3.4. Kognitív szociálpszichológia 2.0

Visszatekintve úgy tűnik, a megismeréstudomány és a szociálpszichológia eredményeit összekötő viadukt építését inkább az utóbbi képviselői kezdeményezték. Talán szerencsésebb volna úgy fogalmaznunk, hogy a szociálpszichológia nyomokban mindvégig magában hordozta a kognitív tudomány később kidomborított szemléletmódját\(^\text{36}\), de módszertani szendergéséből méghis az '50-es évek újabb keletű irányzata ébresztette fel (Abelson et al., 1998). E kapcsolatból aztán a társadalomlélektan sokat profitált, és többek között ennek az együttműködésnek köszönhetően ma már azt is világosan látjuk, hogy a csoport tagjai között kialakuló interakcióik nem elhanyagolható módon kihatnak az információfeldolgozás folyamataira. A közelmúlt kognitív szociálpszichológiájának egyik legjelentősebb keretelméletét Kruglanski (2005) dolgozta ki, amely nem csupán azért érdekes számunkra, mert némi túlzással összefogja az előző fejezetek, illetve az egyén és a csoport végzéséhez terjedt szakirodalmának legfontosabb kérdéseit, hanem mert mindezt az empirikus gyakorlat szintjére is átülteti.

3.4.1. A nyílt és zárt gondolkodás döntéselméleti jelentősége

Kruglanski (2005:37) könyvének bevezetőjében nem kevesebbet állít a nyílt és zárt gondolkodás jelentőségéről, minthogy a kér dés megértése „nem csupán abban van segítségünkre, hogy megértük azt, miként érvelünk, illetve miként alakítjuk (ki) döntéseinket, attitúdjeinket és véleményünket, hanem annak tisztázását is segíti, hogy miként viszonyulunk embertársainkhoz, miként lépünk velük interakcióba, miként működünk csoportokban és miként viszonyulunk külső csoportokhoz”. A szerző abból indul ki, hogy mivel az ember számára nem áll rendelkezésre vég telen mennyiségű idő egy-egy helyzet vagy probléma áttekintése során, így az értékelő folyamat lezárására irányuló igény teljesen érhető szükségletből ered, hiszen egyébként sosem jutnánk dülöre életünkre egyetlen kérdését illetően sem. Az egyének azonban alapvető különbségeket mutatnak a tekintetben, hogy az említett folyamatot hogyan viszonyulnak, s ilyen módon Kruglanski az emberi viselkedés anomáliáit az egyén kognitív rendszerének sajátosságain és előítéletes gondolkodásán túlmenően annak motivációival is magyarázza. Szerinte az információfeldolgozás folyamatát nagyban meghatározza, hogy a megismerés tárgyát képző jelenség miként illeszkedik a személy céljaihoz, ugyanis esetenként a lezárás elhalasztása éppen olyan kívánatos lehet, mint annak

37 Már Bartlett (1932) rámutatott arra, hogy az emberi memória nem magnószalag szerűen rögzíti az emlékeket, hanem korábbi sémákkhoz kapcsolja; ezáltal pedig az emlékek felidézését gyakran a külvilág eseményei vagy az egyén motivációi torzíthatják.

38 A diszpozicionális attribúció "a személy viselkedését belső feltételekre (tulajdonság, motívum, attitűd) visszavezető oktulajdonítás" (Pléh és Boross, 2008:74).
mihamarabb befejezése39. Habár a lezárás iránti igényt számos tényező befolyásolhatja (pl. kulturális hatások, zavaró körülmények, a feladat monotonitása, fáradtság, involváltság mértéke, időnyomás, stb.), az egyén lezárás iránti igénye mégis egy többé-kevésbé állandónak tekinthető szint körül mozog, ami empirikus eszközökkel is mérhető40 (Webster és Kruglanski, 1994).

3.4.2. A lezárás iránti igény hatása az információfeldolgozásra és a személyészlelésre

39 Például ha a döntés kimenete fontos az egyén számára, hajlamosabb lehet több információt gyűjteni és időben elnyújtani az ítélletalkotás folyamatát.
40 Kruglanski ezt a megközelítést Rokeach (1960) elméletéből vette át.
41 A konzervatívizmus fogalma bár önállóan is fellelhető a pszichológiában (ebben az értelemben az egyén egyfaja világszemléletét és beállítódását jelenti), mégis nehezen választható el a politikai ideológiáktól (Kiss, 1999). Ennek ellenére találhatunk példákat az előző értelmeben vett konzervatívizmusra. Wilson (1973 in Kruglanski, 2005:98) meghatározása szerint például a konzervatívizmus „a bizonytalanság kapcsán átelt fenyegetettségre vagy szorongásra való fokozott érzékenység”, tehát jelentősége nem elhanyagolható a kockázat és bizonytalanság mellett meghozott döntések esetében sem.
42 Itt kívánjuk megjegyezni, hogy Kruglanski a lezárás iránti igény magasabb szintjével jellemezhető személyekre nem tekint elmarasztalanó, hiszen – ahogyan már mondtuk is – elmélete szerint ugyanaz az ember motívációjától függően esetenként a lezárás elodázására, máskor pedig annak lerövidítésére törekszik. A zárt gondolkodás pszichológiája e. könyvében mégis elsősorban arra koncentrál, hogy a lezárás iránti igény magasabb szintje milyen problémákkal vezethet többek között a döntéshozatal esetében. 71
viselkedhetnek. Rend iránti igényük miatt nagyobb szükségük mutatkozhat a csoporttársak valamilyen érték mentén történő kategorizációjára, ami „mások figyelmen kívül hagyása és az ő információs forrásként irrelevánsa történő nyilvántartása révén” áttétesen megjelenhet döntéseikben is (Kruglanski, 2005:39). Konzervativizmusuk és rend iránti igényük egy másik lényeges következménye lehet, hogy jobban ellenállnak a változásnak, mivel korábbi véleményük kiolvasztása ismét a bizonytalanság szintjének növekedését eredményezné.

Ugyan korábbi vizsgálatok azt mutatják, hogy az olyan faktorok, mint például a számonkérhetőség (Tetlock, 1985; Webster, Richter és Kruglanski, 1996) vagy a feladat érdekessége (Petty és Cacioppo, 1986) növelik az információfeldolgozás mértékét, ezáltal pedig elnyújtják a lezárás idejét, a magasabb lezárás iránti igénynek rendelkező személyek alapvetően mégis hajlamosabbak különösen heurisztikus eljárásokkal lerövidíteni a döntési folyamatot azokhoz képest, akik a lezárás iránti igény alacsonyabb szintjével jellemezhetőek (Kruglanski, 2005). Réadásul az előbbi körbe tartozók szubjektív magabiztossága –

Összefoglalás

43 Az asszociatív hálózatmodell arra igyekszik válaszat adni, hogy a benyomásokhoz illeszkedő és azoktól eltérő információkat az emberek miként idézik fel az emlékezetükből, illetve ezek a mechanizmusok miként befolyásolják a problémamegoldást.

44 Eszerint a saját csoport iránti elfogultság az egyén önbecsülésének természetes megnyilvánulási formája, amely a külső csoportok és annak tagjainak leértékelésével jár együtt.

45 A kontinuum-modell a kategorizációs folyamatok és egyéni jellemzők társas megismerési folyamatokban betöltött szerepeit mutatja meg, illetve a kettő közötti kapcsolatot vizsgálja (Fiske és Neuberg, 1990/1999). Arra a látszólag egyénit kölcsönösen kizáró előfeltévevére épül, hogy az emberek egyéreszt pillanatok alatt képesek sematikus véleményeket formálni másokról, másrészt viszont az egyéni jellemzőkre is hangsúlyt fektetnek. Ez a mechanizmus hatással lehet a döntéshozatalra is.
4. SZÁMÍTÓGÉPES DÖNTÉSTÁMOGATÁS A SZERVEZETEKBEN

Az előző fejezetekben láthattuk, a szervezeti működés egyik meghatározó momentuma a döntéshozatalnak, amely a cselekvési módozatok és a szervezeti célok között teremt kapcsolatot. Ugyancsak láthattuk, hogy módszertani szempontból az ember racionalitására vonatkozóan két, egymást kölcsönösen kizáró megközelítést alkalmazhatunk. Tekintettel a pszichológia utóbbi bő egy évszázadának tudományos eredményeire, úgy tűnik, jelenleg az emberi racionálitást megkérdőjelező csapata áll nyerésre. E folyamat következményeként könyvelhetjük el, hogy a múlt század harmadik harmadában megjelentek azok a számítógépes programok, amelyek a szervezeti keretek között meghozott döntések pontosságát kívánják előmozdítani. A korlátozott racionális hipotézise mellett ezt a koncepciót olyan kutatási eredmények is erősítették, mint például Meehl (1954) klinikai döntéseket elemző vizsgálatai, aki szerint a páciensekről rendelkezésre álló releváns adatok algoritmus alapján legalább olyan pontos (vagy pontosabb) diagnózisok állíthatók fel, mint szakértői tudás alapján. Ezeket az eredményeket későbbi kutatások is igazolták (pl. Dawes et al., 1989; Grove et al., 2000; Grove et al., 2005; Thorstensson, 2010; stb.), amelyek összességében véve megteremtik a számítógépes döntéstámogató rendszerek (DTR-ek, angolul decision support system, rövidítve DSS46) létfogalmaságának alapjait.

4.1. A döntéstámogató rendszerek meghatározásai

<table>
<thead>
<tr>
<th>Idő</th>
<th>Rendszer</th>
<th>Tipikus funkciók</th>
<th>Technológia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960-</td>
<td>Tranzakciófeldolgozó rendszer (TPS, Transaction Processing Systems)</td>
<td>Tranzakciófeldolgozás: időszakosan, illetve folytonosan</td>
<td>Adatbáziskezelő rendszerek</td>
</tr>
<tr>
<td>1970-</td>
<td>VIR/MIS (Vezetői információs rendszer, angolul Management Information Systems)</td>
<td>Jelenséggenerálás: on-line ellenőrzés, valós idejű lekérdezések</td>
<td>Felhasználói felületen menük, parancsok (adat)lekérdezés</td>
</tr>
<tr>
<td></td>
<td>Irodai rendszerek (OAS, Office Automation Systems)</td>
<td>Irodai tevékenységek teljes körű integrálása</td>
<td>Csoportmunka és munkafolyamat megoldások</td>
</tr>
<tr>
<td></td>
<td>KBS (Ismeretalapú Rendszer, Knowledge-Based Systems)</td>
<td>Szimultációs modelllezés on-line valós idejű tervezés, strukturált döntéshozatal automatizálása, csoportmunka támogatása</td>
<td>Modellbázis MMS (Model Management System) OLTP (On-line Transaction Processing)</td>
</tr>
<tr>
<td></td>
<td>SZR/ES (szakértő rendszer, expert system)</td>
<td>SZR: szakma gyakorlati, explicit modellezése, komplex döntéseknel tanácsadás</td>
<td>Ismeretbázis + következtető gép; magyaráztatás; természetes nyelvű kommunikáció</td>
</tr>
<tr>
<td></td>
<td>NN (Neuronhálózatok, Neural Networks)</td>
<td>Korábban nem ismert összefüggések feltárása</td>
<td>A számítógépek új, 6. generációja</td>
</tr>
<tr>
<td>1990-</td>
<td>FVIR/EIS (Felsővezetői Információs Rendszer, Executive Information Systems)</td>
<td>Flexibilis funkciók, felhasználóbarát felület</td>
<td>Adattárház</td>
</tr>
<tr>
<td></td>
<td>OLAP (On-Line Analytical Processing)</td>
<td>Codd 12 szabálya</td>
<td>Adatbányászat (adatbázisok rejtett kapcsolatainak kinyerése)</td>
</tr>
<tr>
<td></td>
<td>TMR/KMS (Tudásmenedzsment Rendszer, Knowledge Management Systems)</td>
<td>A szervezeti tudásvagyon mint tőke dokumentálása, szétozás, kiaknázása</td>
<td>A döntéshozatal technológiai rugalmas funkciók, egységes felhasználói felület</td>
</tr>
<tr>
<td>2000-</td>
<td>Üzleti intelligencia (BI Business Intelligence)</td>
<td>A szervezet minden tagjához, minden döntési helyzetben eljuttatják a releváns adatokat, információt, szervezeti tudást</td>
<td>A döntéshozatal technológiai rugalmas funkciók, egységes felhasználói felület</td>
</tr>
</tbody>
</table>

10. ábra: A DTR-ek fejlődése

A döntéstámogató rendszerek az inputként szolgáló adatok közötti különbségek alapján is kategorizálhatók (Juhász, 2011). Ilyen elven megkülönböztethető:

- Kommunikációalapú döntéstámogatás (communication-driven DSS): a rendszer elsődleges feladata a döntéshozók közötti kapcsolattartás elősegítése.
- Adatalapú döntéstámogatás (data-driven DSS): a rendszer különböző adatok áttekintésével és szűrésével segíti a döntéshozatalt.
- Dokumentumalapú döntéstámogatás (document-driven DSS): a rendszer a nem strukturált szöveges adatok elemzésében nyújt segítséget.
- Tudásalapú döntéstámogatás (knowledge-driven DSS): a rendszer a beérkező adatokat korábban normatív módon meghatározott matematikai szabályok segítségével önállóan elemzi, amelyet kiértékel és a döntéshozó felé közvetít.
- Modellalapú döntéstámogatás (model-driven DSS): abban különböznak a tudásalapú döntéstámogató rendszerek természetében, hogy a rendszerbe kerülő adatok feldolgozása és kiértékelése nem automatikusan történik, hanem a döntéshozó által meghatározott különböző matematikai modellekkel.

A felsorolásból kitűnik, hogy a DTR-ek különböző típusai igen eltérő minőségű adatalemzéssel és döntést előkészítő funkcióval jellemezhetőek. Az utóbbi szempont alapján például megkülönböztethetünk aktív és passzív rendszereket (Shim et al., 2002). Amíg az aktív rendszerek a rendelkezésre álló adatok alapján valamilyen kész megoldási alternatívával szolgálnak felhasználóik számára, addig a passzív rendszerek csupán az összefüggő adatok szemléletetésére alkalmas eszközök, emiatt például Turban (1998/2005) szerint ezek nem is tekinthetők „igazi” DTR-nek. Az ilyen jellegű szakmai nézeteltérések ből adódóan a döntéstámogató rendszerek fogalmi meghatározásai igen széles spektrumban szóródnak, és a DTR definiálását a legtöbb esetben a témakör kutatói is meglehetősen képlekenynek tartják (pl. Alter, 1977; Bonczek et al., 1981; Sprague és Carlson, 1982; Sántáné et al., 2007; Juhász, 2011; Hosack et al., 2012; stb.)

48 Juhász (2011) az aktív és passzív rendszerek tulajdoni megkülönbözteti a kooperatív döntéstámogató rendszereket is. Ezek is aktív rendszerek, azonban a végző döntési folyamat az ember és a számítógép közötti számos egyeztető lépés eredményeként születik meg.

11. ábra: A DTR-ek és a problémák struktúrái

![Anthony-piramis diagrama](image)

12. ábra: Az Anthony-piramis

Az Anthony-piramis elemei és a közöttük lévő relációk önmagukért beszélnek, és mivel a tárgykört érintő leglényegesebb aspektusokat fentebb már bemutattuk, az ábra részletes magyarázatától eltekintünk. Ehelyett ráterünk az időtényező szerepének bemutatására, amely a bizonytalanság és a komplexitás mellett a szervezeti döntéshozatal harmadik fontos dimenzióját képviseli Howard rendszerében.

52 Forrás: Anthony (1965) alapján.
4.2. A döntéstámogató rendszerekhez kapcsolódó pszichológiai kérdések

Az ember és a gépek közötti problémák nem tekinthetők új keletűnek. A technofóbia – azaz a technológiától való viszonygás – már az ipari forradalom idején is komoly fejtörést okozott néhány gyártulajdonosnak, amely nemcsak a gépek használatának kisebb-nagyobb visszautasításában és ez által a szervezeti hatékonyság csökkenésében, hanem esetenként a gépek megrongálásában is testet öltött. A modern berendezésekekkel kapcsolatos technofóbia szervezeti szintű kutatásának többek között Suchman (1987) adott lendületet. Suchman dolgozók és egy fénymásolókhoz kialakított ún. szakértői segítő rendszer interakcióit vizsgálta, melynek során a felhasználók egy monitoron kaptak szöveges instrukciókat abban az esetben, ha elakadtak a gép működtetése közben. A súgó rendszerének tervezői úgy gondolták, hogy a terméktámogatás leghatékonyabb módja, ha a problémás helyzetekben szekvenciális jellegű, világos és egyértelmű utasításokat adnak az emberek számára, akik ilyen módon könnyedén képesek lesznek elhárítani a felmerült nehézségeket. A felhasználók azonban nem szerették ezt a megoldást, amely végül felkeltette a kutatók érdeklődését és egy vizsgálatsorozathoz is elvezetett. A kutatás konklúziója szerint a fénymásolóhoz mellékelő interaktív súgó azért váltotta ki a vállalat munkatársainak komoly ellenszenvét, mivel az információk kinyerése jelentősen eltért a felhasználók korábban kialakult kognitív sémáitól. Amíg ugyanis a rendszer üzemeltetéséhez kapcsolódó félreértekezések emberek közötti kommunikációs helyzetekben gond nélkül feloldhatóak lettek volna, addig ember és gép viszonylatában mindez nem működött megfelelően és majdnem az egyébként hasznos berendezés teljes körül ignorálásához vezetett.

4.2.1. A teljesítmény kérdése

Nem meglepő módon az 1980-as évektől megjelenő „igazi” döntéstámogató rendszerekkel kapcsolatban is hasonló problémák adódtak, amelyek hasznos funkcióik mellett már a kezdetektől fogva számos kihívást is tartogattak és tartogatnak ma is a szervezetkutatók számára (Hosack et al., 2012). Az ember és számítógép együttműködésének ötlete és gyakorlatba történő átültetése döntéshozatali helyzetekben Meehl (1954), Simon, illetve Tversky és Kahneman (1984) eredményei alapján teljesen logikus gondolatnak tűnik. Meehl vizsgálatai kapcsán utaltunk rá, hogy amennyiben egy rosszul vagy félleg strukturált probléma valamilyen módon algoritmizálható, akkor ezen az úton haladva legalább annyira pontos megoldási javaslatokhoz juthatunk, mintha szakértőket vennénk igénybe. A szakemberek képletekkel és számítógépekkel történő helyettesítése azonban nemcsak Meehl korában váltott ki ellenérzést az emberekből, de úgy tűnik, manapság sem más a helyzet annak ellenére, hogy
időközben a számítógépek mindennapjaink részévé váltak (Nass, 2012). Mindezt legkézenfekvőbb módon az bizonyítja, hogy annak ellenére, hogy a számítógép által végrehajtott algoritmus alapú adatfeldolgozás minőségi és mennyiségi mutatói köztudottan toronymagasan verik az ember kalkulációs teljesítményét53, mégis az információs rendszerek közöttük is főként a DTR-ek - „bevezetésének sikertelenségi rátaja igen magas, az optimistább becslések szerint is mintegy 70-80%-os” (Juhász, 2011:13). Ennek fényében Kleinmuntz (1990) publikációjának címe ugyan kissé provocatív módon, de teljesen jogosan teszi fel a kérdést: Miért használjuk még mindig a fejünket algoritmusok helyett54 komoly téttel jellemezhető döntési helyzetekben?

53 Simon (1982) szavaival élve „az emberek és a számítógépek más dolgokban mutatkoznak erősnek”.
54 A cikk eredeti címe: Why we still use our heads instead of formulas: Toward an integrative approach.
4.2.2. Az elfogadás kérdése

Az ember és számítógép kapcsolatát vizsgáló kutatók sorából kiemelkedik Fred D. Davis. Ő dolgozta ki a Technológia Elfogadás Modellt (Davis, 1989), amellyel a felhasználók részéről történő elfogadást/elutasítást kívánta megvizsgálni munkahelyi körülmények között kifejezetten a számítógép, illetve az azon futtatott programok vonatkozásában. Az eredeti TAM modell Fishbein és Ajzen (1975) várakozás-elfogadás modellje alapján azt feltételezi, hogy az egyének technológiával kapcsolatos használati szándékát és a technológia valós használatát elsősorban az észlelt hasznosság és az észlelt használati egyszerűség határozza meg. Mindezt a 8. ábra szemléltei.

![Technológia Elfogadás Modellje](image)

13. ábra: A Technológia Elfogadás Modellje

A TAM később több módosításon is átesett, különböző validált változatait és a hozzájuk kidolgozott kérdőivet pedig számos vizsgálatban felhasználták (pl. Davis, 1993; Venkatesh és Davis, 1996; Venkatesh et al., 2003;). Venkatesh és Bala (2008) azonban felhívja rá a figyelmet, hogy a TAM és variánsai meglehetősen kevés olyan kutatásban szerepelnek, amelyek kifejezetten a döntéstámogató rendszerekre irányultak volna, holott a kérdéskör egyre lényegesebbé válik az ilyen típusú számítógépes alkalmazások terjedése miatt.

Venkatesh és Davis (2000) egy olyan TAM modellt (TAM 2) javasolnak az eredeti helyett, amely a rendszer jellemzőin túlmenőn figyelembe veszi többek között az egyéni különbségeket (például személyiségváltozók, életkor), a társas befolyás hatásait, valamint a felhasználó motivációt annak magyarázata során, hogy a különböző személyek miként viszonyulnak az IT rendszerekhez. Javasolt modelljüket a következő 9. ábra mutatja.

14. ábra: A Technológia Elfogadás Modelljének módosított változata (TAM 2)

Venkatesh és Bala (2008) szerint a TAM 2 modellt további szempontokkal kell bővíteni (lásd 10. ábra) annak érdekében, hogy a felhasználók számítógépes rendszerekkel kapcsolatos elfogadását jobban megérthessük, ennek érdekében létrehozták a TAM 3 modellt. A modell legjelentősebb változása a korábbiakhoz képest inkább abban áll, hogy figyelembe veszi a faktorok közötti kapcsolatokat és azok egymásra gyakorolt hatásait, illetve újraértelmezi ezek

57 Forrás: Venkatesh és Davis (2000).
viszonrendszerét. Venkatesh és Bala (2008) ebből kifolyólag a modell széleskörű alkalmazhatóságát emeli ki, amely egyaránt alkalmas a szervezetek operatív és a stratégiai döntéstámogató rendszereinek elfogadás-vizsgálatára is.

15. ábra: A Technológia Elfogadás Modelljének módosított változata (TAM 3)

Mint láthatjuk, az idő múlásával a TAM modellek újabb verziói egyre és egyre komplikáltabbá váltak. Ennek legvalószínűbb oka, hogy noha a DTR-re vonatkozó kutatások száma az 1970-es évektől kezdődően napjainkig exponenciálisan növekszik, a problémák azonban makacs módon csak nem akarnak szűnni, ezért az egyszerűbb megközelítéseket gyakran bonyolultabbak váltják fel, több-kevesebb sikerrel. Hosack és munkatársai (2012) nem véletlenül adták tanulmányuknak azt az alcímet, hogy a „döntéstámogató rendszerekhez kapcsolódó kutatások élnek, és [köszönik szépen], jól vannak”. Ez a harsány cím pedig annak a néhány kétkedő tudósok szól, akik szerint a döntéstámogató rendszerek területén már nagyon nehéz új vizsgálati szempontokat fellelni (lásd pl. Arnott és Pervan et al., 2008).

Ugyancsak fontos megemlítetnünk Nass (2012) kutatásait, aki két évtizede vizsgálja az emberek és az intelligens eszközök közötti kapcsolatokat. Véleménye szerint az egyének azért viszonyulnak irracionalisan az „okos” technikai berendezésekhez, mert az ember-gép interakció során a felhasználók valójában ezektől is a társas kapcsolatok normái szerinti viselkedést várják el. A humán-humán interakció korábbi elemzései rámutattak, hogy a küldő fél gyakran hozzáilleszti mondanivalóját és viselkedését a fogadó fél vélt vagy valós elvárásaihoz annak érdekében, hogy a közlémi folyamat hatékonyabb legyen (Clark és Murphy, 1982; Moreland és Zajonc, 1982). A legtöbb okos eszköz és számítógépes alkalmazás azonban nyilvánvalóan nem képes ilyen jellegű interakcióra a funkcióján túlmenően, ezért Nass és munkatársai olyan programokat készítettek, amelyek figyelembe vették a fentieket. Az eredmények szerint azokban az esetekben, amikor a számítógépet „megtanították” az emberi viselkedés alapvető szabályaira, a felhasználók jobban kedvelték és elfogadták a rendszert, mint alapesetben.

Nass és Brave (2005) arra is talált bizonyítékot, hogy az intelligens eszközökétől nem csak a társas normák betartását várják el a felhasználók, hanem ezekkel szemben ugyanúgy hajlamosak a személyesítés terzítéseit (például előitéleteket és sztereotípiákat) alkalmazni, mint társas helyzetekben, amelyek a gépektől érkező információkat is erodálhatják. A szerzőpáros érdekes példája szerint a BMW egyik csúcsmodelljének navigációs rendszerével kapcsolatban számtalan panasz érkezett a cég ügyfélszolgálatára, miszerint a berendezés teljes mértékben használhatatlan. Az autógyár a probléma kivizsgálása során semmilyen egzakt hibát nem talált. Végül pszichológusokat is bevontak, akik azt javasolták, cseréljék le a női

60 A tanulmány eredeti címe: A Look Toward the Future: Decision Support Systems Research is Alive and Well
hangot férfira. A változtatás olyannyira eredményesnek bizonyult, hogy a panaszok többsége egyszeriben elmaradt. Utólag kiderült, a kérdéses gépjárművet elsősorban magas státuszú férfiak vásárolták, aki képtelenek voltak elviselni egy „nő” epés megjegyzéseit, ha éppen gyorsabban hajtottak a megengedettnél, vagy túlszaladtak a célon. Egy „férfitől” sokkal inkább elfogadták a kritikákat.

4.2.3. Az oktatás szerepe az elfogadásban

Összefoglalás
Manapság a számítógépek olyannyira meghatározó szereplővé váltak a munkahely világának, hogy az informatikai rendszerekben bekövetkező legapróbb hibák is akár komolyan veszélybe sodorhatják egy-egy nagyobb szervezet stabil működését. A számítógépek rohamos térhódításával párhuzamosan azonban nem csak a hardver és szoftver komponensekben rejlő kockázatok kapnak kiemelt figyelmet, hanem a legalább akkora problémát megtestesítő ember és számítógépes rendszerek közötti interakciók is, amellyel a múlt század '80-as éveiben megjelent kognitív ergonómia, illetve annak részterülete, a szoftver-ergonómia foglalkozik behatóan (Izsó és Antalovits, 2000). Habár a számítógépeket és a rajtuk futtatott alkalmazásokat emberek tervezik emberek számára, úgy tűnik, a felhasználók és az intelligens rendszerek találkozása mégsem zajlik minden esetben zökkenőmentesen. Hunyady és Németh (2011:7) ennek elsődleges okaként a két rendszer közötti jelentős kommunikációs különbséget jelölik meg: szerintük „nem az a fő probléma, hogy nem tudunk még eleget a gépekről, hanem az, hogy nem tudunk eleget magáról az emberről és a humán kommunikációiról”. Az említett jelenség két alapvető problémához vezethet: egyrészt a felhasználók nem fogadják el azokat az esetenként jelentős erőforrásokat felemésztő technológiai megoldásokat, amelyek eredeti szándékuk szerint a munkafolyamatok pontosságát hivatottak növelni, másrészt az ember-gép rendszerek közötti kommunikációs nehézségek félreértés forrásai lehetnek, amelyek a szervezeti működés során kisebb-nagyobb hibákat eredményezhetnek. A vállalati információs rendszerek egyik agilis tagjának tekinthető döntéstámogató rendszerek kapcsán mind az előbbi, mind pedig az utóbbi probléma fokozottan jelentkezik (Perrow, 1994; Juhász, 2011; Moskowitz et al., 2011; Davern et al., 2012; Hosack et al., 2012; stb.). A számítógépes döntéstámogató rendszerek koncepciójának egyik megállomódója az a Herbert A. Simon volt, akinek munkásságát már bemutattuk a második fejezetben. Simon a miatt érvelt a szervezeti döntéshozók számítógépes támogatása mellett, mivel felismerte az ember korlátozott racionálisitását és annak nem mellékes következményeit. Úgy tűnik azonban, hogy e rendszerek terjedésének legnagyobb kerékkötője ugyanazon a jelenség, amely megindokolta életre hívásukat, ez pedig nem más, mint az emberi irracionalitás.
5. KUTATÁSI KÉRDÉSEK ÉS HIPOTÉZISEK

5.1. Kérdésfelvetések
Az előző fejezetek alapján felmerülhet az emberben, hogy a számítógépes döntéstámogató rendszerektől érkező javaslatok – összehasonlítva a szakértőktől érkező azonos tartalmú javaslatokkal – milyen módon befolyásolják a döntéshozók ítéleteinek irányait. Egyrészt láthattuk, az egyének alapvető hajlalmán köze tartozik, hogy a problémamegoldás kognitív költségeinek csökkentése érdekében heurisztikus egyszerűsítő eljárásokat alkalmazzanak, amelyek megsértik a normatív alapú racionalitás-modellek axiómát, másrészt pedig igazolható, hogy algoritmusok segítségével a gyakorlati életben is sok esetben legalább olyan jó döntések hozhatók, mint szakértők javaslataira alapozva. Mindebből kifolyólag jogosnak tűnnek azok a vélemények, melyek szerint számítógépek alkalmazásával javíthatjuk a szervezeti döntéshozatal minőségét. A humán információfeldolgozás komplex folyamataira azonban szociálpszichológiai tényezők is jelentős mértékben hatással vannak, ezért érdemes megvizsgálni, hogy a döntéshozók a különböző forrásokból származó javaslatokat milyen módon építték be saját ítéleteikbe.

5.2. Hipotézisek
Kruglanski kognitív szociálpszichológiai keretelmélete több szempontból is releváns elemeket tartalmaz a fentebb elhangzott kérdéseket illettően. Többek között ugyanis magyarázatot ad arra, hogy mi áll az egyes személyek igen csak eltérő információszűrési modelljei mögött, és ebből kifolyólag némelyek miért igyekeznek másokhoz viszonyítva időben elnyújtani vagy éppen mielőbb befejezni az információfeldolgozás folyamatát. Kruglanski arra is reflektál, hogy az említett tényezőknek milyen hatása van a problémamegoldásra és a személyészslelésre. Véleménye szerint a magasabb lezárás iránti igénytelenségből következő konzervatívabbak és tekintélytisztelőbbek, nehezebben tolerálnak a bizonytalanságot és a kétértelműséget, ezért összességében véve rugalmatlannabb gondolkodásmód jellemező őket, mint a lezárás iránti igény alacsonyabb szintjével jellemezhető társaiat. Az elmélet szerint ezek a tulajdonságok az információforrások észlelésére és így közvetetten a döntéshozatalra is hatással vannak. Ezek alapján a következő hipotéziseket fogalmazzuk meg:
1/a. hipotézis

1. A lezárás iránti igény mértéke és az emberi szakértőkre vonatkozó vélekedés irányultsága között kapcsolat áll fenn. A magasabb lezárás iránti igénynyel jellemezhető személyek pozitívvabb módon vélekednek az emberi szakértőkről, mint a lezárás iránti igény alacsonyabb mértékével jellemezhető egyének.

1/b. hipotézis

A lezárás iránti igény mértéke és a döntéstámogató rendszerre vonatkozó vélekedés irányultsága között kapcsolat áll fenn. A magasabb lezárás iránti igénynyel jellemezhető személyek negatívvabb módon vélekednek a döntéstámogató rendszerről, mint a lezárás iránti igény alacsonyabb mértékével jellemezhető egyének.

Az 1/b. hipotézis inverz módon kapcsolódik az 1/a. hipotézisben megfogalmazott feltevésünkhöz. A kérdés külön vizsgálatát azonban indokoltta teszi, hogy noha sejthető, hogy a kísérleti személyek szempontjából az emberi szakértők és a döntéstámogató rendszerek azonos dimenzióba esnek (a dimenzió elnevezése lehetne például a „döntéstámogatás forrása”), ez egyáltalán nem biztos. Nem elképzelhetetlen ugyanis, hogy a lezárás iránti igény magasabb szintjével jellemezhető személyek a keretemléletből levezetett 1/a. hipotézisnek megfelelően ugyan valóban pozitívvabb módon fognak vélekedni szakértőtársaikról, azonban nem zárhatjuk ki, hogy ettől függetlenül hasonlóan kedvelik, vagy éppen hasonlóan elutasítják

61 Kruglanski és Freund (1983) kísérletükben végzőz izraeli tanár szakos hallgatókat úgy tájékoztatta k, hogy a kísérletben általában iskolás askenázi és szefárd zsidó gyerekek fogalmazó képességét kívánják megvizsgálni a résztvevő egyetemisták segítségével. A kutatók abból a helyben elterjedt sztereotípiából indultak ki, miszerint az európai gyókerrel rendelkező askenázi zsidók jobb intellektuális képességgel rendelkeznek, mint a közelszemétől származó szefárd zsidók. A kísérleti személyek valójában mindennap jártak a szöveget kapták annyi módosítással, hogy a lapra feltüntetett nevek inkább askenázi vagy inkább szefárd diákról utaltak. Az eredmények szerint a lezárás iránti igény magasabb szintjével jellemezhető kísérleti alanyok véleményét nagyobb mértékben befolyásolták a lapokon szereplő nevek (a sztereotípiának megfelelően adtak jobb vagy rosszabb jegyeket), mint az alacsonyabb lezárás iránti igénynyel rendelkezhető alanyokat. Ez a hatás időnyomás alatt különösen kézzelfogható volt.
a döntéstámogató rendszert, mint az alacsonyabb lezárás iránti igénytel rendelkező
személyek. A szakértőktől és a számítógépes döntéstámogató rendszertől érkező javaslatok
egy dimenzióban történő észlelésére vonatkozó felvetésünknek mindenesetre megerősíti például
Nass (2012) több mint két évig tartó és igencsak meghökkentő eredményeket felvonultató kísérletének
második és a számítógépes döntéstámogató rendszertől érkező javaslatok
jellemzője és az adott javaslatok esetén alkalmazásuk a személyészlelés törvényeit
alkalmazzák. Ebből adódóan úgy véljük, hogy az 1/a. és 1/b. hipotézis egymás
komplementerei lesznek.

2. hipotézis
A lezárás iránti igény magasabb szintjével jellemezhető személyek ítéletalkotási folyamataira
nagyobb hatással van a döntéstámogatás forrása, mint a lezárás iránti igény alacsonyabb
szintjével jellemezhető személyekre. Az előbbiek ugyanazt a javaslatot inkább elfogadják
szakértőktől és inkább elutasítják a döntéstámogató rendszertől, mint az utóbbiak.

A 2. hipotézisünk az 1/a. és az 1/b. feltételezésből egyenesen következik. A felvetés alapját a
lezárás iránti igény magasabb szintjével jellemezhető felhasználóknál leírt tekintetéssel
képzi, amelyre több kutatás is irányult (pl. Jost et al., 1999; Kruglanski és Freund, 1983;
Kruglanski, 1989; Kruglanski, 2005; Harsányi, 2014; stb.). Az elméleti összefoglalóban
részletezéseben, a kutatási kérdésekhez úgy bevezetőben pedig röviden már ismertettük azokat a
tényezőket, amelyek arra engednek következtetni, hogy a lezárás iránti igény mértéke
befolyásolni fogja a döntéstámogatás forrására vonatkozó szubjektív bizalom megítélést,
ezért e helyen nem ismételjük meg a korábbiakat.

3. hipotézis
A lezárás iránti igény magasabb szintjével jellemezhető egyének ítéleteit a szakértők
javaslatai csak akkor befolyásolják jobban a számítógépnél, ha a javaslat az egyén saját
álláspontjának befagyasztása előtt érkezik. Amennyiben a lezárás iránti igény magasabb
szintjével jellemezhető személy keresési folyamata már lezárult, az utólag érkező javaslatok
forrásának modelláló szerepe lecsökken.

A lezárás iránti igény magasabb szintje azt jelenti, hogy egyes személyek hamarabb befejezik
az információk feldolgozását, mint mások. Ennek a folyamatnak Kruglanski (2005) alapvető
jelentőséget tulajdonít, hiszen végző elhatározások nélkül egyetlen cselekedetet sem tudnánk
megtenni. Az elhatározás többnyire a korábban kimunkált álláspontok befagyasztását jelenti,
amikor az idea a megvalósítás fázisába kerül. Kruglanski szerint azok az emberek, akik
Természetükből adódóan hajlanak a mihamarabbi lezárásra, nehezebben adják fel kialakított álláspontjukat azokhoz képest, akik bármilyen oknál fogva a lezárás iránti igény képzeletbeli skálájának túlsó tartományában helyezkednek el. Ebből következik, hogy azok, akik a lezárás iránti igény magasabb szintjével jellemezhetőek, az utólag érkező inkongruens véleményeket és javaslatokat kevésbé fogják figyelembe venni azokhoz képest, akik alacsonyabb lezárás iránti igényen rendelkeznek. Természetesen mindez semmilyen tudományos újdonsággal nem jár, hiszen az elméletből egyenesen levezethető, és számos korábbi kutatás is alátámasztotta már. Az viszont érdekesebb lehet, hogy a lezárás iránti igény magasabb szintjével jellemezhető személyek esetében a befagyasztott álláspont ismételt kiolvasztása szempontjából már nem releváns, hogy a kialakított véleményükkel inkongruens javaslatok szakértőtől vagy számítógéptől érkeztek, függetlenül attól, hogy a kapott javaslatok tartalmukat illetően helyesek vagy helytelenek. Velük szemben viszont a lezárás iránti igény alacsonyabb szintjével rendelkező társaik valószínűleg jobban megfontolják a saját álláspontjuk kikristályosodásához képest időben később érkező inkongruens véleményeket is, függetlenül azok forrásától, amelyek várhatóan visszaköszönnek az általuk hozott döntésekben. Másként fogalmazva azt gondoljuk, hogy a lezárás iránti igény magasabb szintjével jellemezhető személyek tekintélytisztelete és konzervativizmusa, illetve a lezárás iránti igény magasabb szintjéből adódó összes, fentebb már taglalt tulajdonsága csak akkor bír jelentőséggel a számítógéppel támogatott döntések esetében, és elsősorban akkor köszön vissza a döntések eredményeiben, ha a döntéstámogatás a saját álláspont befagyasztása előtt érkezik. A magasabb lezárás iránti igénnel jellemezhető személyek ítéleteiben a forrásokra vonatkozó vélekedések már nem játszanak meghatározó szerepet, ha a döntéstámogatás a saját álláspont kikristályosodása után érkezik, mivel sem szakértők, sem pedig a számítógép hatására nem, vagy kevésbé hajlamosak felolvasztani a kialakított álláspontjukat.
6. MÓDSZER

6.1. A vizsgálat helyszíne

Vizsgálatunkat a katasztrófavédelem több helyi és területi egységénél végeztük az Országos Katasztrófavédelmi Főigazgatóság előzetes jóváhagyása mellett. A szóban forgó szervezet tűzmegelőzési, tűzoltási és műszaki mentési, iparbiztonsági valamint polgári védelmi feladatokat lát el. A kívülállók leginkább a vonulós tűzoltókat ismerik, akik a közvélemény-kutatások szerint a társadalom egyik legmegbízhatóbb és legmegbeccsültebb tagjainak számítanak62.

A tűzoltók feladatköré színes és összetett. Az egyszerűbb avar- és gaztűzek felszámolásán túlmenően bármikor riaszthatják őket többek között pincék, melléképületek, családi és társasházak, egészségügyi intézmények, személy- és tehergépjárművek, vasúti szállítóeszközök, hajók, repülőgépek és ipari létesítmények tűzheimhez is, amelyek esetenként igen komplex kihívásokat tartogatnak a káreseménnyel kapcsolatba kerülő állomány számára. A tűzoltók munkájának másik kiemelt területét a műszaki mentések jelentik. Ezek szintén magukban foglalják az egyszerűbb viharkárok felszámolásától kezdve az összetettebb közlekedési és ipari baleseteket.

Habár az ország területén összesen 105 hivatásos és 68 önkormányzati tűzoltóság működik, mégis adott esetben akár 20 perc felett is lehet az a vonulási idő, amíg az elsőlegesen beavatkozó egység kiérkezik egy-egy kárhelyszínre (Komjáthy, 2013). Ebből adódóan egyáltalán nem mellékes szempont, hogy a beérkező segélyhívás értékelésekor azonnal a megfelelő erő és eszköz kerüljön lerasztásra az aktuális káreset vonatkozásában, mivel a riasztási fokozat utólagos módosítása nagymértékben ronthatja a sikeres beavatkozás esélyeit és annak hatékonyságát. Ezzel párhuzamosan az is kiemelten fontos, hogy feleslegesen ne vonuljanak olyan tűzoltóegységek, amelyekre azonos időben másik eseteknél is szükség lenne. A két említett szempont közötti egyensúly megteremtése egyfajta „művészi tehetséget” kíván a jelzéseket értékelő operatív döntéshozóktól, különösen azért, mert a szervezet működéséből és feladataiból adódóan a beavatkozások kapcsolódó döntéseket pillanatok alatt kell meghozni. Hibás következtetések esetén azonban az állampolgárok és a beavatkozó

62 Lásd például GfK csoport felmérést, http://www.mfor.hu/cikkek/vallalatok/Megbizhato_szakmak__a_tuzoltok__a_kiralyok__a_politikusok__a_kutyak. html
állomány biztonságát érintő kockázatok is indokolatlan mértékben megnöhetnek, amelynek adott esetben mind jogi, mind pedig lelkiismereti következményeivel szembesülnie kell a döntéshozónak.

6.2. A döntéstámogató rendszer bemutatása

A szervezet vezetői állománya a fentiek miatt 2012-ben bevezette a PAJZS elnevezést viselő adatbázis alapú számítógépes döntéstámogató rendszert, amelyet elsősorban a megyei műveletirányító központok, másodszorban pedig az ügyeleti feladatokat ellátó helyi szervek állománya használ. A szóban forgó aktív számítógépes döntéstámogató rendszer a beérkező jelzések kiértékelését segíti oly módon, hogy a bejelentés közben rögzített, esetenként igencsak hiányságú adatok alapján, valós időben javaslatot ad a szükséges erő-eszköz riasztására vonatkozóan.

A PAJZS rendszer működése korábbi beavatkozások tapasztalataiból, valamint a tűzoltás és műszaki mentés részletes törvényi és szervezeti szabályaira épül. Az alkalmazás a kutatás kezdetekor (2012. december) 630 különböző kérestre vonatkozó javaslatot tartalmazott, amelyek száma folyamatosan változik az újabb tapasztalatok és igények alapján. A döntéstámogató rendszer képes arra, hogy az említett adatbázisban tárolt adatokat összevevő és értékelő rendszer alkalmazásával a folyamatban lévő kérestetted, amelyhez hozzá tudja rendelni az éppen rendelkezésre álló, szabadon riasztható tűzoltó erőket is. Az említett paraméterek alapján meghatározza az optimális riasztási fokozatot, valamint konkrét javaslatot tesz, hogy melyik járművek kezdjék meg a vonulást.

A katasztrófavédelem tűzoltó egységeinek riasztási fokozatai I. és V. között szóródnak a kéreset kiterjedésétől függően, ahol az I. a legalacsonyabb, míg az V. a legmagasabb szintet jelöli. Ezen túlmenőn léteznek új „kiemelt” riasztási fokozatok is, ami azt jelenti, hogy a beavatkozás valamilyen „különleges” egységet igényel (például magasból mentő szer, országúti gyorsbeavatkozó gépjármű, stb.). Ebből adódóan a riasztási fokozatok I., I. kiemelt, II., II. kiemelt, stb. lehetnek, amely összesen tíz variációt eredményez. Az alábbiakban bemutatunk néhány példát arra vonatkozóan, hogy a PAJZS rendszer adatbázisában az egyes kéresetekre vonatkozóan milyen riasztási fokozatok találhatók.

63 A számadat a PAJZS rendszer faábrájának összesítéséből származik.
<table>
<thead>
<tr>
<th>ID</th>
<th>típus</th>
<th>kategória 1</th>
<th>kategória 2</th>
<th>kategória 3</th>
<th>kategória 4</th>
<th>egészraj</th>
<th>félraj</th>
<th>daru</th>
<th>műszaki mentőszer</th>
<th>magasból mentőszer</th>
<th>vízszállító</th>
<th>fokozat</th>
<th>félraj</th>
<th>KMSZ</th>
<th>Onállóan beavatkozó ÖTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tűzeset</td>
<td>Börtön/Fogda</td>
<td>Egyszíntes</td>
<td>Ég</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>III.</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tűzeset</td>
<td>Egészségügy</td>
<td>Kórház</td>
<td>Egyszíntes</td>
<td>Füstölés</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I.</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Tűzeset</td>
<td>Garázs</td>
<td>Mélygarázs</td>
<td>Ég/Robbanás</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>II.</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>Tűzeset</td>
<td>Közlekedés</td>
<td>Föld alatti/ Metró</td>
<td>Mélyállomás</td>
<td>Ég/Robbanás</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>III.</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Tűzeset</td>
<td>Közlekedés</td>
<td>Közúti</td>
<td>Személygépko csi</td>
<td>Ég</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I.</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>Tűzeset</td>
<td>Közlekedés</td>
<td>Légi</td>
<td>Reptéren kívül</td>
<td>IX. kategória</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>V.</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Tűzeset</td>
<td>Közlekedés</td>
<td>Vasúti/villamos</td>
<td>Pályaudvar</td>
<td>Robbanás</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>II.</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>Tűzeset</td>
<td>Közlekedés</td>
<td>Vízi</td>
<td>Hajó</td>
<td>Füstölés</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I.</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>Műszaki mentés</td>
<td>Egyéb baleset</td>
<td>Állatbaleset</td>
<td>Egyéb</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I.</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>441</td>
<td>Műszaki mentés</td>
<td>Elemi csapás</td>
<td>Vízkárok</td>
<td>Vízeltávolítás</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>I.</td>
<td>0</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>457</td>
<td>Műszaki mentés</td>
<td>Épület káreset</td>
<td>Épületomlás, épület baleset</td>
<td>Földszíntes</td>
<td>Tömeges</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>II.</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

16. ábra: A PAJZS döntéstámogató rendszer adatházisának illusztrációja
6.2. Vizsgálati személyek
A vizsgálatban összesen 277 fő vett részt, akik a Katastrálófavédelem területi és helyi egységeinél láttak el főügyeletesi, műveletirányítói vagy ügyeletes beosztást, ebből adódóan több-kevesebb tapasztalattal rendelkeztek a PAJZS rendszer használatát illetően. A szervezet sajátosságai miatt a vizsgálati személyek egyetlen kivételtől eltekintve váltottak az ugyanilyen rendszerek szolgáltatásának és működésének adott módjának alapján, ebből adódóan több-kevesebb tapasztalattal rendelkeztek. A számítógépes döntéstámogató rendszert a kitöltés idején 3 fő egyáltalán nem használta meg; 3 fő kevesebben, mint 1 hónapja, 5 fő 1-3 hónapja; 14 fő 3-6 hónapja; 31 fő 6-12 hónapja, a fennmaradó 220 fő pedig már több mint egy év használta.

6.3. A kutatásban használt mérőeszközök
Az adatokat három kérdőívvel és egy általunk szerkesztett kísérleti helyzet segítségével vettük fel.

1. A szakértőkre vonatkozó attitűdök feltárására egy saját kialakítású kérdőívet szerkesztettünk.
3. A számítógépes döntéstámogató rendszerre vonatkozó vélekedéseket a Technológia Elfogadás Modell mellé kialakított kérdőív segítségével mértük, amelynek magyar adaptációját Nyirő (2011) készítette el.
4. Döntési feladatot konstruáltunk a tűzoltás és műszaki mentés normatív szakmai szabályzói alapján.

Az alábbiakban röviden összefoglaljuk a felhasznált eszközökre vonatkozó legfontosabb tudnivalókat.

6.3.1. A szakértőkre vonatkozó attitűdök adatfelvételi eszköze
A kérdőív szerkesztésével az volt a célunk, hogy pontosabb képet kapjunk a vizsgálati személyek szakértőkkel kapcsolatos attitűdjeiről. Az eredeti kérdőív egy Likert-féle ötfokozatú szemantikus differenciál skála volt, amelyen 20 bipoláris melléknévpárból álló tétel szerepelt. Főkomponens elemzéssel (Principal Component Analysis) azt találtuk, hogy egyetlen item kivételével („nem félrevezető - félrevezető”) az összes kérdés ugyanarra a komponensre töltött. Az eredeti kérdőív belső konzisztenciája magas (Cronbach α = 0,883) volt. A végleges kérdőívből kihagytuk az említett tételt. Az így kapott kérdőív konzisztenciája továbbra is magas (Cronbach α = 0,879)

64 Az anonimitás biztosítása miatt a mintából utólag eltávolítottuk a hölgyre vonatkozó adatokat, így 276 fő válaszait elemeztük.
maradt, ami akkor sem változott volna jelentősen, ha valamelyik itemet elhagytuk volna (ezekben az esetekben az α értéke a 0,869-0,877 intervallumban mozgott volna).

6.3.2. A Lezárási Igény Kérdőív

A Lezárási Iránti Igény Kérdőív öt alskálát tartalmaz, amelyek Kruglanski (1989 és 2005) zárt és nyílt gondolkodáshoz kapcsolódó elméletéből adódnak. Az alskálák a következők:

1. Rend és szervezettség igénye
2. Döntéskészség
3. Többszempontúság igénye/kerülés
4. Kétértelműséggel szembeni ellenérzés
5. Újdonságkeresés/kerülés

Az alskálák itemjei tekintetében az 1, 6, 11, 20, 24, 28, 34, 35, 37, 47 a Rend és szervezettséghez, a 12, 13, 14, 16, 17, 23, 40 a döntéskészséghez, a 3, 9, 15, 21, 31, 32, 33, 38, 42 a kétértelműséggel szembeni ellenérzéshez, a 2, 4, 10, 25, 29, 36, 41, 44 az újdonságkeresés/kerüléshez, és az 5, 7, 8, 19, 26, 27, 30, 45 a többszempontúság igényéhez/elkerüléséhez tartozik.

A 18, 22, 39, 43, és 46 tételek a kitöltő szociális megfelelés iránti igényét mérik. Amennyiben ezek összege eléri, vagy meghaladja a 15 pontot, a vizsgálati személy eredményeit nem lehet figyelembe venni.

A kérdőív 16 fordított kérdést tartalmaz, amelyek a 2, 5, 7, 12, 13, 16, 19, 20, 23, 25, 28, 29, 36, 40, 41, és 47 tételek.
6.3.3. Technológia Elfogadás Kérdőív (TAM)

A Technológia Elfogadás Modellt és a hozzá kapcsolódó mérőeszköz eredeti változatát Davis (1989) dolgozta ki, amellyel a felhasználók részéről történő elfogadást/elutasítást kívánta megvizsgálni munkahelyi körülmények között kifejezetten a számítógép, illetve az azon futtatott programok vonatkozásában. A kutatásban a kérdőív módosított változatát használtuk fel, amelynek magyar adaptációját Nyirő (2011) készítette el. A TAM kérdőívek megbízhatóságát a korábbi vizsgálatok magasnak találták (Cronbach $\alpha = 0,832$ körüli értékek).

6.3.4. A döntési feladat kidolgozásának háttere

A számítás paraméterei:

1. A tűz szabad fejlődésének időtartama – t_{sz} (min)

 $t_{sz} = t_j + t_r + t_v + t_e$

 $t_j = 6$ perc
 $t_r = 2$ perc
 $t_v = 8$ perc
 $t_e = 3$ perc
 $t_{sz} = 19$ perc

2. A tűz terjedési sebessége – v_1 (m/min)

 $v_1 = 2$ m/min

3. Az oltóanyag fajlagos adagolási intenzitása – I_A (l/m2/min)

 $I_A = 5$ l/m2/min

4. A tűz területe – A_t (m2) = 20 m2

5. A sugárcső teljesítménye – q^* (l/min) = 300 l/min

6. Egy raj által szerelhető sugarak száma: – $n_{sz} = 2$

A szükséges erők és eszközök számítása:

1. Az időegységre vonatkoztatott szükséges vízmennyiség meghatározása – Q_{sz} (l/min)

 $Q_{sz\text{ olt}} = A_t \times I_A = 100$ l/min

 $A_{véd} = 200$ m2

 $I_{A\text{ véd}} = I_A / 4 = 1,2$ l/min/m2

 $Q_{sz\text{ véd}} = A_{véd} \times I_{A\text{ véd}} = 240$ l/min

 $Q_{sz\text{ össz}} = Q_{sz\text{ olt}} + Q_{sz\text{ véd}} = 340$ l/min

2. Szükséges sugarak számának kiszámítása – N_s

 $N_{s\text{ olt}} = Q_{sz\text{ olt}} / q_s = 0,3 = 1$

 $N_{s\text{ véd}} = Q_{sz\text{ véd}} / q_s = 0,8 = 1$

 $N_{össz} = N_{s\text{ olt}} + N_{s\text{ véd}} = 2$
3. A tűzoltásához szükséges rajok számának meghatározása – \(N_e \)

\[
N_e^{\text{olt}} = \frac{N_s^{\text{olt}}}{N_{se}} \approx 0.5 \\
N_e^{\text{véd}} = \frac{N_s^{\text{véd}}}{N_{se}} \approx 0.5 \\
N_e^{\text{tart}} = 1
\]

\(N_e = N_e^{\text{olt}} + N_e^{\text{véd}} + N_e^{\text{tart}} = 2 + 2.5 \) raj az életmentéshez illetve az épület kiürítéséhez.

Összesen: 4,5 raj szükséges a riasztás szakszerű végrehajtásához.

Tekintettel a helyszín adottságaira és az ott tartózkodó személyek egészségügyi állapotára, szükséges magasból mentő és vízszállító jármű riasztása is.

A fentiekből adódóan az optimális riasztási fokozat: IV. kiemelnél

6.4. A vizsgálat menete

Az előzetesen kiválasztott mérőeszközöket és a döntési feladatokat a www.online-kerdoiv.com oldalra töltöttük fel. A vizsgálati személyek utólagos beazonosíthatatlanságáról gondoskodunk, ezért teljesen anonim módon válaszolhatták meg a kérdéseket. Az adatfelvétel olyan asztali számítógépek, notebookok, tabletek és okostelefonok segítségével történt, amelyek internetkapcsolattal rendelkeztek, így biztosították az említett honlap elérését. Az elővizsgálat tapasztalatai alapján mind a négyfajta készülék alkalmazsának bizonyult a kérdőívek gyors és kényelmes kitöltésére. Az adatfelvételt kiscsoportokban végeztük el azokkal a személyekkel, akik önkéntes alapon vállalták a vizsgálatban való részvételt. A toborzás különböző szakmai fórumokon személyesen, illetve telefonon és emailben történt. Arra külön törekedtünk, hogy a résztvevők kipihentek legyenek, illetve a kitöltéshez minden esetben csendes helyszínt kerestünk annak érdekében, hogy a lezárás iránti igény mértékét környezeti változók ne befolyásolják. A kutatás megkezdése előtt előzetes engedélyt kértünk és kaptunk az OKF-től.

98
A vizsgálati személyek a demográfiai adatok megválaszolását követően egymás utáni sorrendben töltöttek ki a szakértőkre vonatkozó attitűdkérdőívet, a lezárási igény kérdőívet, a TAM kérdőívet, majd végül megoldották a döntési feladatot. Az adatkitöltéssel átlagosan 20-25 perc alatt végeztek a kollégák. Az alábbiakban a döntési feladat részleteit ismertetjük, amely a vizsgálat fontos elemét képezte.

A vizsgálati személyeknek egy tűzoltói szakfeladathoz (káresetfelvételhez) kapcsolódó operatív döntést kellett meghozniuk. A résztvevőket négy csoportba osztottuk egy kétszer kettes mátrix elrendezés alapján a következők szerint:

<table>
<thead>
<tr>
<th>Döntéstámogatás forrása</th>
<th>Döntéstámogatás ideje</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saját döntés előtt</td>
</tr>
<tr>
<td>Szakértő</td>
<td>1</td>
</tr>
<tr>
<td>Döntéstámogató rendszer (PAJZS)</td>
<td>2</td>
</tr>
</tbody>
</table>

17. ábra: A kísérleti helyzetek elrendezése

A döntési helyzetet úgy konstruáltuk meg, hogy a vizsgálati személyek mind a négy csoportban ugyanazokkal az adatokkal és információkkal dolgozhattak, illetve minden esetben ugyanazt a döntési javaslatot kapták az optimális riasztási fokozatra vonatkozóan. Csupán azon változtattunk, hogy mit jelöltünk meg a döntéstámogatás forrásának (szakember/számítógép) és mikor érkezett a javaslat (saját vélemény felállítása előtt/után). A résztvevők segítségként láthatták, hogy az esethez képest milyen távolságra helyezkednek el a riasztható tűzoltógépjárművek. A webes felület előnyeit kihasználtuk a vizsgálat során. Amíg az 1. és 2. csoport esetében a döntési feladat közlésével egy időben megmutattuk a szakértők/döntéstámogató rendszer által javasolt optimális riasztási fokozatot annak érdekében, hogy a vizsgálati személy saját döntésénél ezt figyelembbe tudja venni, addig a 3. és 4. csoportnál előbb azt kérünk, a résztvevők maguk döntsék el, szerintük mi lenne az optimális riasztási fokozat. Utóbbiak csak a saját maguk által helyesnek tartott riasztási fokozat megadását követően a következő lapon láthatták, hogy az állásfoglalásukhoz képest mit javasolnak a szakemberek, illetve a döntéstámogató rendszer (ami mindkét esetben természetesen azonos volt). Ezt követően ezek a személyek ismételten lehetőséget kaptak arra, hogy korábban meghozott döntésüket módosítsák a kapott javaslat alapján. Ilyen módon össze tudtuk hasonlítani, hogy csupán az információforrásra vonatkozó verbális közlés ideje (saját döntés meghozatala előtt/után) és a döntéstámogatás forrása (számítógép/ember) hatással van-e a döntésekre.
Mind a szakértőktől, mind pedig a döntéstámogató rendszertől érkező riasztási fokozatot szándékosan „lerontottuk”, ebből adódóan a korábbi számításainkkal szemben nem IV. kiemelt, hanem III. kiemelt fokozat szerepelt az összes adatlapon, mint javaslat. Érdemes közbevethetnünk, hogy a tüzoltói beavatkozások során sokszor valóban nehéz megállapítani az optimális riasztási fokozat mértékét, ebből adódóan nem mondhatjuk, hogy a III. kiemelt fokozat teljesen rossz megoldás lenne. Azonban tekintettel az épület funkciójára, illetve az ott tartózkodó személyek egészségügyi állapotára és nagyobb létszámára, a magasabb, tehát a IV. (vagy V.) kiemelt riasztási fokozat mindenféle jobb választás, amit ráadásul a fenti számításaink is alátámasztanak. A szervezet egységes képzési tematikái – amelyben a vizsgálati személyek is folyamatosan, kötelező jelleggel részt vesznek – kiemelik, bizonytalan és indokolt esetben mindig több szer vonultatása (ún. „túlriasztás”) ajánlott a biztonságos beavatkozások érdekében. Ebből adódóan azt vártuk - főként az 1. és 2. csoport esetében, ahol a saját vélemény kialakítása előtt érkezett a döntéstámogatás -, hogy a III. kiemelt riasztási fokozatot a vizsgálati személyek többnyire felvelé fogják módosítani, mivel ez sokkal jobban megfelel a valóságos körülményeknek.

A vizsgálati személyek random módon létrehozott négy csoportja a következő döntési feladatot kapta:
I. csoport:
Olvassa el az alább leírást, majd határozza meg döntéstámogatás segítségével a riasztási fokozatot! Seholfalva településről telefonos segélyhívás érkezik a megyei főügyéletre, és az eset kezelése Önhez kerül. A bejelentő személytől megtudja, hogy Seholfalva, Kossuth utca 10. szám alatt található Gyémántévek Idősek Otthonában, a földszinti hálók melletti kb. 20 nm-es tároló helyiségétől fekete füstöt látnak felszállni a bukóra nyitott ablakból. A bejelentő közli, hogy növérként dolgozik az intézetben, így tájékoztatja Önt, hogy jelen időpontban a személyzetet és a látogatókkal együtt maximum 80 fő tartózkodik a kétszintes épületben, mely alatt pince is található.
Az otthonban 7 fő mozgáskorlátozott bentlakó személyt ápolnak, akik a földszinten kerültek elhelyezésre, azonban előfordulhat, hogy orvosi vizsgálat miatt néhányan az emeleti kezelőben vannak. Az épület kb.10*35 m alapterületű, két bejáratú épület. A főépület egy külön épületben található gázkazán gondoskodik.
Miután már közel két perce beszélnek, haladéktalanul intézkednie kell a riasztásról, további információk már csak a bejelentő későbbi visszahívása után állnak rendelkezésre.

Vonulási rend
kiérkezésre tervezett idő

<table>
<thead>
<tr>
<th>Riasztási fokozat</th>
<th>A raj megnevezése</th>
<th>Vonulás távolsága (km-ben)</th>
<th>(percben)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Helység I</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>I. Falva I</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>II. Község I</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>III. Város I</td>
<td>40</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>III. Megye I</td>
<td>41</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>IV. Ország I</td>
<td>46</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>V. Külföld I</td>
<td>53</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Kiemelt Község Létra</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Kiemelt Város Létra</td>
<td>40</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Kiemelt Falva Víz</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Döntéstámogatás a szakértőtársak részéről:

Ez a feladatot a mostani vizsgálat előtt megmutattuk három előre kiválasztott és beavatott olyan kollégájának, akik az Ön szolgálati helyén főügyeletesként és műveletirányítóként dolgoznak. Mindhárom kollégája több mint 10 éves szakmai tapasztalattal rendelkezik a tűzoltás és műszaki mentés és/vagy a híradó ügyeleti feladatok területén. Ez a szakértői csoport a fenti esetre konszenzus alapján III. K. riasztási fokozatot javasolt.
A fenti javaslat ismeretében kérjük, határozza meg a riasztási fokozatot!

- Elfogadom a kollégáim javaslatát, és III. K. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és I. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és I. K. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és II. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és II. K. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és III. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és IV. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és IV. K. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és V. riasztási fokozatot határozz meg.
- Módosítom a kollégáim javaslatát, és V. K. riasztási fokozatot határozz meg.

101
II. csoport:

Olvassa el az alább leírást, majd határozza meg döntéstámogatás segítségével a riasztási fokozatot! Seholfalva településről telefonos segélyhívás érkezik a megyei főügyeleytre, és az eset kezelése Önhöz kerül.

A bejelentő személytől megtudja, hogy Seholfalva, Kossuth utca 10. szám alatt található Gyémántévek Idősekre, a földszinti hálók melletti kb. 20 nm-es tároló helyiségből fekete füstöt látnak felszállni a bukóra nyílt ablakból. A bejelentő közli, hogy növérként dolgozik az intézetben, így tájékoztatja Önt, hogy jelen időpontban a személyzettel és a látogatókkal együtt maximum 80 fő tartózkodik a kétszintes épületben, mely alatt pince is található.

Az otthonban 7 fő mozgaskorlátozott bentlakó személyt ápolnak, akik a földszinten kerültek elhelyezésre, azonban előfordulhat, hogy orvosi vizsgálat miatt néhányan az emeleti kezelőben vannak. Az épület kb.10*35 m alapterületű, két bejáratot rendelkezik. A fűtésről egy külön épületben található gázkazán gondoskodik.

Mivel már közel két perce beszélnek, haladéktalanul intézkednie kell a riasztásról, további információk már csak a bejelentő későbbi visszahívása után állnak rendelkezésre.

Vonulási rend

<table>
<thead>
<tr>
<th>Riasztási fokozat Araj megnevezése</th>
<th>Vonulás távolsága (km-ben)</th>
<th>(percben)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Helység I</td>
<td>1</td>
</tr>
<tr>
<td>I.</td>
<td>Falva I</td>
<td>10</td>
</tr>
<tr>
<td>II.</td>
<td>Község I</td>
<td>15</td>
</tr>
<tr>
<td>III.</td>
<td>Város I</td>
<td>40</td>
</tr>
<tr>
<td>III.</td>
<td>Megye I</td>
<td>41</td>
</tr>
<tr>
<td>IV.</td>
<td>Ország I</td>
<td>46</td>
</tr>
<tr>
<td>V.</td>
<td>Külföld I</td>
<td>53</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Község Létra</td>
<td>15</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Város Létra</td>
<td>40</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Falva Víz</td>
<td>10</td>
</tr>
</tbody>
</table>

Döntéstámogatás a Pajzs rendszer segítségével:

A károkat korábban felvittük a Pajzs programba, amely az analízis után III. K. riasztási fokozatot javasolt. "Seholfalva" helyett természetesen valószínűség települést adtunk meg a program számára, amely esetében a vonulási távolságok megegyeznek a fentiekkel.

A fenti javaslat ismeretében kérjük, határozza meg a riasztási fokozatot!

○ Elfogadom a Pajzs rendszer javaslatát, és III. K. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és I. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és I. K. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és II. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és II. K. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és III. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és IV. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és IV. K. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és V. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és V. K. riasztási fokozatot határozok meg.
III. csoport:
Olvassa el az alább leírást, majd határozza meg DÖNTÉSTÁMOGATÁS NÉLKÜL a riasztási fokozatot! Seholfalva településről telefonos segélyhívás érkezik a megyei főügyeletre, és az eset kezelése Önhöz kerül.
A bejelentő személytől megtudja, hogy Seholfalva, Kossuth utca 10. szám alatt található Gyémántévek Idősek Otthonában, a földszinti hálók melletti kb. 20 nm-es tároló helyiségből fekete füstöt látnak felszállni a bukóra nyitott ablakból. A bejelentő kölzi, hogy növérként dolgozik az intézetben, így tájékoztatja Önt, hogy jelen időpontban a személyzettel és a látogatókkal együtt maximum 80 fő tartózkodik a kétszintes épületben, mely alatt pince is található.
Az otthonban 7 fő mozgáskorlátozott bentlakó személyt ápolnak, akik a földszinten kerültek elhelyezésre, azonban előfordulhat, hogy orvosi vizsgálat miatt néhányan az emeleti kezelőben vannak. Az épület kb.10*35 m alapterületű, két bejáratlattal rendelkezik. A fűtésről egy külön épületben található gázkazán gondoskodik. Mivel már közel két perce beszélnek, haladéktalanul intézkednie kell a riasztásról, további információk már csak a bejelentő későbbi visszahívása után állnak rendelkezésre.

Vonulási rend

Riasztási fokozat A raj megnevezése Vonulás távolsága (km-ben) Vonulás távolsága (percben)
I. Helység I 1 8
I. Falva I 10 12
II. Község I 15 17
III. Város I 40 42
III. Megye I 41 43
IV. Ország I 46 48
V. Külföld I 53 55
Kiemelt Község Létra 15 17
Kiemelt Város Létra 40 42
Kiemelt Falva Víz 10 12

Kérjük, az alábbiakban az eddigi szakmai tapasztalatai alapján, a Pajzs rendszer és kollégái SEGÍTSÉGE NÉLKÜL határozza meg az esethoz tartozó riasztási fokozatot! Csak és kizárólag az Ön véleménye számít, döntését senki nem fogja megismerni és véleményezni. NAGYON FONTOS, HOGY ÖNÁLLÓAN DÖNTSÖN!
Kérem, adja meg az Ön által javasolt riasztási fokozatot!

○ I.
○ I. K.
○ II.
○ II. K.
○ III.
○ III. K.
○ IV.
○ IV. K.
○ V.
○ V. K.
Döntéstámogatás a szakértőtársak részéről:

Ez a feladatot a mostani vizsgálat előtt megmutattuk három előre kiválasztott és beavatott olyan kollégájának, akik az Ön szolgálati helyén főügyeletesként és műveletirányítóként dolgoznak. Mindhárom kollégája több mint 10 éves szakmai tapasztalattal rendelkezik a tűzoltás és műszaki mentés és/vagy a híradó ügyeletesi feladatok területén.

Ez a szakértői csoport a fenti esetre konszenzus alapján III. K. riasztási fokozatot javasolt. A fenti információ ismeretében kérem, gondolja át előző döntését, és ismét határozza meg az esethez tartozó riasztási fokozatot! (Természetesen nem kötelező megváltoztatná korábbi döntését, ha továbbra is fenntartja, erősítsé meg úgy, hogy kiválasztja a megfelelő lehetőséget!)

- Elfogadom a kollégáim javaslatát, és III. K. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és I. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és I. K. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és II. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és II. K. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és III. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és IV. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és IV. K. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és V. riasztási fokozatot határozok meg.
- Módosítom a kollégáim javaslatát, és V. K. riasztási fokozatot határozok meg.
IV. csoport:

Olvassa el az alább leírást, majd határozza DÖNTÉSTÁMOGATÁS NÉLKÜL a riasztási fokozatot! Seholfalva településről telefonos segélyhívás érkezik a megyei főügyeletre, és az eset kezelése Önhöz kerül.

A bejelentő személytől megtudja, hogy Seholfalva, Kossuth utca 10. szám alatt található Gyémántévek Idősek Otthonában, a földszinti hálók melletti kb. 20 nm-es tároló helyiségből fekete füstöt látnak felszállni a bukóra nyitott ablakból. A bejelentő közli, hogy növérként dolgozik az intézetben, így tájékoztatja Önt, hogy jelen időpontban a személyzetet és a látogatókkal együtt maximum 80 fő tartózkodik a két szintes épületben, mely alatt pince is található.

Az otthonban 7 fő mozgáskorlátozott bentlakó személyt ápolnak, akik a földszinten kerültek elhelyezésre, azonban előfordulhat, hogy orvosi vizsgálat miatt néhányan az emeleti kezelőben vannak. Az épület kb.10*35 m alapterületű, két bejárattal rendelkezik. A fűtésről egy külön épületben található gázkarbon oxidáció. Mivel már közel két perce beszélnek, haladéktalanul intézkednie kell a riasztásról, további információk már csak a bejelentő későbbi visszahívása után állnak rendelkezésre.

Vonulási rend

<table>
<thead>
<tr>
<th>Riasztási fokozat</th>
<th>A raj megnevezése</th>
<th>Vonulás távolsága (km-ben)</th>
<th>Vonulás mértéke (percben)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Helység I</td>
<td></td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>I. Falva I</td>
<td></td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>II. Község I</td>
<td></td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>III. Város I</td>
<td></td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>III. Megye I</td>
<td></td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>IV. Ország I</td>
<td></td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>V. Külföld I</td>
<td></td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>Kiemelt Község Létra</td>
<td></td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Kiemelt Város Létra</td>
<td></td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Kiemelt Falva Viz</td>
<td></td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Kérjük, az alábbiakban az eddigi szakmai tapasztalatai alapján, a Pajzs rendszer és kollégái SEGÍTSÉGE NÉLKÜL határozza meg az esethez tartozó riasztási fokozatot! Csak és kizárólag az Ön véleménye számít, döntését senki nem fogja megismerni és véleményezni. NAGYON FONTOS, HOGY ÖNÁLLÓAN DÖNTSÖN!

Kérem, adj meg az Ön által javasolt riasztási fokozatot!

⊙ I.
⊙ I. K.
⊙ II.
⊙ II. K.
⊙ III.
⊙ III. K.
⊙ IV.
⊙ IV. K.
⊙ V.
⊙ V. K.
Döntéstámogatás a Pajzs rendszer segítségével:
A káresetet korábban felvittük a Pajzs programba, amely az analízis után III. K. riasztási fokozatot javasolt.
"Seholfalva" helyett természetesen valóságos települést adtunk meg a program számára, amely esetében a vonulási távolságok megegyeznek a korábban ismertetett adatokkal.
A fenti információ ismeretében kérem, gondolja át előző döntését, és ismét határozza meg az esethez tartozó riasztási fokozatot! (Természetesen nem kötelező megváltoztatnia korábbi döntését, ha továbbra is fenntartja, erősítse meg úgy, hogy kiválasztja a megfelelő lehetőséget!)

○ Elfogadom a Pajzs rendszer javaslatát, és III. K. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és I. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és I. K. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és II. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és II. K. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és III. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és IV. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és IV. K. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és V. riasztási fokozatot határozok meg.
○ Módosítom a Pajzs rendszer javaslatát, és V. K. riasztási fokozatot határozok meg.
7. EREDMÉNYEK

A kutatás elsősorban arra irányult, hogy megvizsgáljuk a humán szakértők és a számítógép javaslatainak döntéshozókra gyakorolt hatásait a lezárás iránti igény alacsonyabb és magasabb szintjének függvényében. Első lépésként összevetettük a Lezárási Igény Kérdőívé eredményeit az emberi szakértőkre, illetve a döntéstámogató rendszerre irányuló vélekedések eredményeivel annak érdekében, hogy az I/a. és I/b. hipotézisek állításait teszteljük. Az adatelemzéshez SPSS 17.0 programot használtunk.

7.1. A szakértők iránti attitűd és a lezárás iránti igény kapcsolata

18. ábra: A szakértők iránti attitűd és a lezárás iránti igény kapcsolata
Az elemzésbe nem vettük bele azokat a személyeket, akiknél a Lezárási Igény Kérdőív nem értékelhető a magas szociális megfelelési vágy (>15 pont) miatt. A megmaradó 268 ember adatai alapján a szakértő társakkal szembeni pozitív attitűdök közepes mértékben, pozitíván korrelálnak a lezárási igénnyel ($r(266) = 0.553$, $p < 0.001$). A korreláció akkor is fennmarad, ha parciális korrelációval kontrollálunk az életkorra ($r(263) = 0.457$, $p < 0.001$), tehát a kettő változó kapcsolatát nem kizárólag az életkori változatosság magyarázza.

7.2. A technológia elfogadás és a lezárás iránti igény kapcsolata

7.2.1. A TAM kérdőív elemzése

Főkomponens elemzéssel ellenőriztük, hogy a kérdőív alskálái magyar nyelven hogyan alakulnak. Minden item kommunalítása magas volt (> 0,600). A főkomponens elemzés 3 komponenst azonosított, azonban egy item kivételével mindegyik item töltött az első komponensre (a kivétel a „használata nem ijesztő” item volt, mely önmagában hozott létre egy új komponens). Az első komponens magyarázott hányada 56,182% volt, ami megfelelő. Az itemek közül néhány az első komponensen kívül másik komponensekre is töltött, de ezek súlya nagyságrendileg ugyanaz volt, mint az első komponens esetében. Mindez azt jelenti, hogy a komponensek nem különültek el világosan egymástól. A skálához tartozó Cronbach $\alpha = 0,822$, azaz magas belső konzisztenciát jelzett. Ez akkor sem változott volna jelentősen, ha valamelyik itemet elhagyott volna (ekkor a Cronbach α értékek a 0,783-0,882 tartományban mozogtak volna).

Amennyiben a „használata nem ijesztő” itemet elhagytuk az elemzésből, úgy már minden item töltött az első komponensre (és további három item töltött ezen kívül egy második komponensre is). Ennek az egyetlen itemnek a kivételével tehát az azonosított komponensek száma egytelten csökkent, de a második komponens nem volt világosan elkülöníthető az elsőtől a faktorsúlyok tekintetében. A magyarázott hányad az első komponens esetében 59,530%-ra nőtt, ami megfelelő. A skálához tartozó Cronbach $\alpha = 0.822$, azaz magas belső konzisztenciát jelzett. Ez akkor sem változott volna jelentősen, ha valamelyik itemet elhagytuk volna (ekkor a Cronbach α értékek a 0,781-0,885 tartományban mozogtak volna).
Rotált megoldással (direct oblimin) már majdnem tökéletesen elkülönült két faktor.

1) Faktor és itemek:

- eredményeit kíválóra értékelem,
- gyorsabb munkavégzés,
- javítja a hatékonyságot,
- nincs problémám a minőségével,
- hasznos a munkámban,
- nőveli a munkaértékét,
- adatfeldolgozása magas,
- magamotlásra használható,
- kényelmetlen és nyugtalanító (negatívan),
- azt csinálja, amit akarok, idegesé tesz (negatívan)

2) Faktor és itemek:

- idegesé tesz (negatívan),
- használata nem kíván nagy szellemi erőfeszítést,
- használata világos érthető,
- könnyű használni

Az „idegesé tesz” item mindkét faktorba jelen van, ha ezt is kivesszük az elemzésből, akkor világosan elkülönült a két komponens.

7.2.2. A TAM és a lezárás iránti igény kapcsolata

Az elemzésbe nem vettük bele azokat a személyeket, akiknél a lezárás iránti igény kérdőív nem értékelhető a magas szociális megfelelési vágy (>15 pont) miatt. A megmaradó 268 ember adatai alapján a lezárási igény közepes mértékben, negatívan korrelál a technológiai elfogadás összpontszámával (r(266) = -0,535, p < 0,001). A korreláció akkor is fennmarad, ha parciális korrelációval kontrollálunk az életkorra (r(263) = -0,490, p < 0,001), tehát a kettő változó kapcsolatát nem kizárólag az életkori változatosság magyarázza.
7.3. A szakértők iránti attitűd, a technológia elfogadás és a lezárás iránti igény összefüggései

A szakértőtársakkal szembeni pozitív attitűdök önmagukban is negatívan korrelálnak a technológiai elfogadással – azaz minél pozitívvabban viszonyul valaki a szakértőtársaihoz, annál negatívvabban viszonyul a technológiahoz, és fordítva (r(266) = -0,436, p < 0,001). Ez nem meglepő, hiszen az előző eredmények ismeretében könnyen lehet, hogy ezt a látszólalagos összefüggést valójában a lezárás iránti igény szintje mediálja: akinek magasabb a lezárás iránti igénye, az pozitívvabban viszonyul szakértő társaihoz, és negatívvabban a technológiahoz. Parciális korrelációt végeztünk annak eldöntésére, hogy az attitűdök és a technológiai elfogadás közötti negatív kapcsolat megmarad-e akkor is, ha kontrollálunk a lezárás iránti igényre. Az eredmények szerint a negatív kapcsolat szignifikáns marad, de csak nagyon kismértékű (r(263) = -0,195, p = 0,001). Mindez arra utal, hogy a magyarázó tényező valóban nagyrészt a lezárás iránti igény lehet.
7.4. A lezárás iránti igény, a döntéstámogatás és a döntéshozatal kapcsolata

A 2. és 3. hipotézis ellenőrzéséhez kiszűrtük a mintámból azokat a személyeket, akiknek nincs, vagy csak nagyon kevés tapasztalatuk van a PAJZS rendszerrel. Ennek a fő oka az volt, hogy az ilyen tapasztalat alapvetően befolyásolhatja, hogy a kísérleti helyzetben mennyi hitelt adnak magának a rendszernek. Az elemzésben csak azok a személyek maradtak, akik már több mint fél éve használják a rendszert (ez a feltétel 25 fő esetében nem teljesült).

A 2. és 3. hipotézis megválaszolására egy többszemű pontos varianciaanalízist végezünk a következő faktorokkal:

- LEZÁRÁSI IGÉNY SZINTJE (medián menti bontásban: alacsony, magas),
- BEFOLYÁSOLÓ INFORMÁCIÓ IDEJE (döntés befagyasztása előtt, döntés befagyasztása után), illetve a
- BEFOLYÁSOLÓ INFORMÁCIÓ FORRÁSA (szakértők vagy a PAJZS rendszer).

A függő változó az volt, hogy milyen mértékben (hány fokozattal és milyen irányban) módosították a személyek a szakértők/PAJZS rendszer javaslatát. Ha valaki elfogadta a javaslatot, a hozzá tartozó érték 0 volt; ha valaki egy fokozattal felfelé módosított, akkor a hozzá tartozó érték +1, ha két fokozattal felfelé módosított, akkor a hozzá tartozó érték +2, és így tovább. Az így létrehozott függő változó normál eloszlásúnak tekinthető (ferdeség = 0,038, csúcsosság = -0,705).

Az eredmények szerint szignifikáns volt a BEFOLYÁSOLÓ INFORMÁCIÓ IDEJE főhatás (F(1,235) = 20,603, MSE = 2,276, p < 0,001), ami abban nyilvánult meg, hogy a magasabb lezárás iránti igényű kísérleti személyek jobbává váltak a javaslatot (kevésbé módosították azt), amennyiben a befolyásoló információ a saját döntésük meghozatala előtt, és nem utána érkezett (módosítás mértéke az előre érkező információink M = +1,918 fokozat, SE = 0,138; utólag érkező információ esetén M = +1,018 fokozat, SE = 0,142). Ez az eredmény összhangban van a harmadik hipotézissel.

Ugyancsak szignifikánsnak bizonyult a LEZÁRÁSI IGÉNY SZINTJE főhatás (F(1, 235) = 23,001, MSE = 2,276, p < 0,001). Ez abban nyilvánult meg, hogy a magasabb lezárási igénnel rendelkező személyek átlagosan jobban elfogadták (kevésbé módosították) a szakértő által javasolt riasztási fokozatot (M = +0,993 fokozat, SE = 0,141), mint az alacsony lezárási igénnel rendelkező személyek (M = +1,943 fokozat, SE = 0,140). A 11. ábrán látható hibasáv a standard hiba.
A főhatásoknál fontosabb, hogy tendencia szinten jelen volt egy BEFOLYÁSOLÓ INFORMÁCIÓ FORRÁSA x LEZÁRÁSI IGÉNY SZINJTE kereszthatás ($F(1, 235) = 3,143$, $MSE = 2,276$, $p = 0,078$), ami a második hipotézis szempontjából releváns. Post Hoc elemzésünk alapján a kereszthatást az okozta, hogy az alacsonyabb lezárási igénnel rendelkező személyeknél kevésbé számított, hogy az információ szakértőtársstól vagy a PAJZS rendszerértől érkezik ($p = 0,770$); azonban a magasabb lezárási igényű személyeknél szignifikánsan jobban befolyásolta a döntésüket a humán ágens véleménye, mint a számítógépes rendszeré ($p = 0,028$).
Végül, szignifikánsnak bizonyult a BEFOLYÁSOLÓ INFORMÁCIÓ IDEJE x LEZÁRÁSI IGÉNY SZINTJE kereszthatás is (F(1, 235) = 8,994, MSE = 2,276, p = 0,003). Post Hoc elemzésünk szerint elsősorban a magasabb lezárási igénnel rendelkező személyek esetében volt nagyobb jelentősége annak, hogy előre vagy utólag kapják meg a befolyásoló információt (p < 0,001), náluk az előre adott információ nagyobb mértékben befolyásolta a döntést (kisebb mértékben módosították azt), mint az utólag adott információ. A másik oldalról, az utólag adott információ esetében kevésbé volt jelentősége a lezárási igénynek (p = 0,199), ugyanakkor az előre kapott információ esetében jobban számított, hogy az illető magasabb vagy alacsonyabb lezárási igényű (p < 0,001). Előre kapott információ esetében a befolyásolhatóság mértéke nagyobb volt, ha a személy magasabb lezárási igénnyel rendelkezett, mint ha alacsonyabból.

<table>
<thead>
<tr>
<th>előre utólag</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Std. Error</td>
</tr>
<tr>
<td>lezaras_ iranti_ igeny (Binned)</td>
<td>lezaras_ iranti_ igeny (Binned)</td>
</tr>
<tr>
<td>alacsony lezárás</td>
<td>magas lezárás</td>
</tr>
<tr>
<td>előre kapott információ</td>
<td>2,096</td>
</tr>
<tr>
<td>utólag kapott információ</td>
<td>1,790</td>
</tr>
</tbody>
</table>

21. ábra: A javaslatok módosításának mértéke a lezárás iránti igény függvényében (B)
8. MEGBESZÉLÉS

8.1. Kutatási kérdések és hipotézisek

Munkánk lényegében arra irányult, hogy megvizsgáljuk a szakértők és a számítógépek javaslatainak döntéshozókra gyakorolt hatásait a lezárás iránti igény szintjének függvévében. Kruglanski kognitív szociálpszichológiai keretelméletéből arra következtettünk, hogy a lezárás iránti igény magasabb mértékével rendelkező személyek tekintélytiszteletükből és konzervativizmusukból adódóan valószínűleg kedvezőbb módon vélednek a szakértőkről, mint a lezárás iránti igény alacsonyabb szintjével jellemezhető alanyok. Azt is feltételeztük, hogy az előbbi csoportba tartozó személyek attitűdjei a döntéstámogató rendszerre vonatkozóan kevésbé lesznek kedvezőek, mint az utóbbi csoport tagjaié. Hipotéziseinket az empirikus kutatás eredményei alapvetően visszaigazolták. A vizsgált mintán a lezárás iránti igény szintje az 1/a. hipotézis esetében közepes mértékben, pozitívan korrelál a szakértőkre vonatkozó vélekedés szintjével, míg az 1/b. hipotézis esetében a lezárás iránti igény és a döntéstámogató rendszerre vonatkozó vélekedés között közepes mértékű, negatív korrelációt találtunk.

A 2. hipotézisben azt az állítást fogalmaztuk meg, hogy a lezárás iránti igény magasabb szintjével jellemezhető személyek ítéletalkotási folyamataira nagyobb hatással van a döntéstámogatás forrása, mint a lezárás iránti igény alacsonyabb szintjével jellemezhető személyekre. Az előbbiek ugyanazt a javaslatot inkább elfogadják szakértőktől és inkább elutasítják a döntéstámogató rendszertől, mint az utóbbiak. A 2. hipotézis az első (pontosabban az 1/a. és 1/b.) hipotézisból következik, illetve szintén szorosan kapcsolódik Kruglanski (2005) elméletéhez. Kruglanski szerint ugyanis a zárt gondolkodás „mások figyelmen kívül hagyása és az ő információs forrásként irreleváns történő nyilvánítása révén” (Kruglanski, 2005:39) komoly hatást gyakorolhat a döntésekre is. A vizsgált minta alapján úgy tűnik, a lezárás iránti igény valóban szerepet játszhat ebben a kérdésben.

A zártabb gondolkodású személyek esetében az információforrásra vonatkozó vélekedések modelláló szerepe azonban főként akkor érvényesül, ha a döntéstámogatás a saját vélemény kikristályosodása előtt érkezik. Erre vonatkozóan a 3. hipotézishez fűződő empirikus eredmények szolgáltatnak bizonyítékokat. Mint láthatottuk, azokban az esetekben, amikor a döntéshozókat a keresési folyamat lezárására ösztönöztük, a magasabb lezárás iránti igénnyel jellemezhető személyek esetében is jelentőségét vesztette, hogy a döntéstámogatás forrása szakember vagy számítógépes ágens. Összefoglalóan tehát azt mondhatjuk, vizsgálatunk
eredményei szerint a lezárás iránti igény magasabb szintje hatással lehet a különböző információforrásoktól érkező javaslatok elfogadására, illetve a végső döntésre vonatkozóan, ez a hatás azonban akkor érvényesül igazán, ha a javaslat időben megelőzi a döntéshozó saját álláspontjának rögzülését.

Felmerülhet a kritika, miszerint a vizsgált szervezet döntéstámogató programja esetleg valóban szoftver-ergonómiai vagy funkcionálishibákkal terhelt, ebből adódóan a felhasználók egy részének kedvezőtlen attitűdjei a rendszerrel szemben teljesen jogosok. Ezt a felvetést azonban árnyalja, hogy az alacsonyabb lezárás iránti igénnyel jellemzhető személyek ugyanazt a programot alapjában véve kevésbé tartják megbízhatatlan információforrásnak és jobban elfogadják a technológiát, mint a magasabb lezárás iránti igénnyel rendelkező társak. A vizsgálat során alkalmazott adatfelvételi eljárás módszertanilag ugyancsak áthidalta a felvetett nehézséget, mivel a kísérleti személyek két fő csoportja esetében kizárólag a döntéstámogatás eredeti vonatkozó információkat manipuláltak. Míg az egyik csoportba véletlenszerűen beosztott alanyok úgy tudták, hogy a javaslat emberi szakértők konszenzusának eredménye, addig a másik csoport tagjai azt hitték, a megoldás számítógéptől érkezett. Ebből adódóan kiszűrtük a döntéstámogató rendszer esetlegesen valóban létező funkcionális hibáit.

A kutatás tervezése során szóba kerültek más adatfelvételi módszerek is. Például megvizsgáltuk annak opcionális lehetőségét, hogy az adatfelvételt beépített emberekkel, valamint egy számítástechnikailag manipulált döntéstámogató rendszerrel hajtsuk végre. Ebben az esetben a vizsgálati személyek egyik csoportjának döntéseit a klasszikus szociálpszichológiai kísérletekben alkalmazott csoportnyomás segítségével befolyásoltuk volna, míg a másik csoport tagjait egy olyan döntéstámogató rendszer elé ültettük volna, amely minden esetben egy előre meghatározott döntési javaslatot szolgáltatna. Noha nagyon csábítónak tűnt ez a megoldás, végül azért vetettük el, mert az adatfelvétel becsületeink szerint – tekintettel a lehetőségeinkre – időben roppantul kitolódna, és a komplex logisztikai hátteréből adódóan abban sem voltunk biztosak, hogy kellő számu alanyt tudtunk volna bevonni az eljárásba.
Ugyancsak felmerült, hogy a vizsgálat során implicit asszociációs tesztet (IAT) használjunk. Tudomásunk szerint Magyarországon jelenleg is fut egy projekt az ELTE-PPK és a Harverd Egyetem kutatóinak együttműködésében, amely az említett eszközt használja. A magyar nyelvű honlapon a következő leírást találjuk a tesztről:

„A pszichológusok tudják, hogy az emberek van, hogy nem azt mondják, amit gondolnak, ami a fejükben él; vagy azért mert nem akarnak, vagy mert nem tudnak igazat mondani. Például, ha megkérdeznék egy dohányost, mennyit szív naponta: aki 4 dobozzal szív egy nap, az azt állítja, csak kettővel, mert kínos bevallani az igazságot. Vagy az is lehet, hogy a dohányos meg sem válaszolja a kérdést, tekintettel arra, hogy ez magánügy. Ezek arra jó példák, amikor az emberek nem akarnak színt vallani. De az is lehetséges, hogy a napi 4 dobozt szívő dohányos azért mondja, hogy csak kettőt szív, mert valóban azt hiszi, hogy csak 2 dobozzal szív el egy nap. Tudatlanul ad valóit választ, amit többnyire önbecsapásnak nevezünk; ez a példa illusztrálja azt, amikor valaki nem tudja megadni a kívánt választ.

Ez a megkülönböztetés a "nemakarás" és a "nemtudás" között olyan, mint amikor valaki szándékosan rejt el valamit mások elől illetve tudattalanul csapja be önmagát. Az Implicit Asszociációs Teszt lehetővé teszi az ilyen rejtett tartalmak felfedését. Az IAT az olyan implicit attitűdöket és hiedelmeket méri, melyeket az emberek nem akarnak vagy nem tudnak elmondani”

A szóban forgó eszköz alkalmazásával kapcsolatban azonban ugyanazok az aggályok merültek fel bennünk, amelyeket fentebb már taglaltunk. Úgy gondoltuk, az IAT kitöltéséhez mindenképpen számítógépes laborra lenne szükség, mivel a minimális rendszerkövetelményeknek (elsősorban szoftver oldalról) jönéhány számítógép, illetve a legtöbb tablet és nagyobb kijelzővel ellátott okostelefon (ún. phablet) sem felelt meg. A vizsgálatba bevonni kívánt személyektől pedig már aránytalanul nagy szívességet kértünk volna, ha saját eszközeikre mindenféle egyéb kiegészítő programok telepítését is elvárjuk.

65 Forrás: https://implicit.harvard.edu/implicit/hungary/background/index.jsp
A két alternatív kutatási eljárást azért említjük meg mégis, mivel a témakör érintő esetleges jövőbeli vizsgálatok számára hasznosnak bizonyulhatnak. Különösen igaz ez az IAT tekintetében, hiszen a technológia folyamatos fejlődésének köszönhetően az újabban piacra kerülő tabletek és phabletek talán hamarosan lehetővé teszik a kutatóknak, hogy helyhez kötöttség nélkül is adatokat tudjanak felvenni, ami valószínűleg pozitívan hatna a kitöltési hajlandóságra.
8.2. Kitekintés

A döntéstámogató rendszerek olyan alkalmazások, amelyekkel feltetetően egyre többet fogunk találkozni a szervezeti életben. Tekintettel arra, hogy a felhasználók és az ilyen típusú alkalmazások közötti interakciók eltérnek a hagyományos ember-számítógép kapcsolatok sémáitól – hiszen egy különös szerepcseréből adódóan ezekben az esetekben a programok „utasítják” az embereket bizonyos cselekvési alternatívák végrehajtására – várhatóan az általunk felvetett probléma még számos alkalommal vissza fog köszönni az alkalmazott pszichológia magyar nyelvű szakirodalmában. Ezt a vélekedésünket többek között alátámasztja, hogy a disszertáció megszületésével párhuzamosan több releváns tudományos munka látott napvilágot, amelyek természetesen inspirálólag hatottak dolgozatunk elkészítésére is. Ilyennek tekintjük például Hunyady György és Németh T. Enikő neveivel fémjelzett Ember-gép kapcsolat című tanulmánygyűjteményt, amely a Tinta Kiadó gondozásában jelent meg 2011-ben, vagy éppen Clifford Nass magyar nyelvre lefordított könyvét, Az ember, aki hazudott a laptopjának című rendkívül érdekes stílusban megírt könyvet, amelyet 2012-ben adott ki a HVG. Szintén a téma aktualitását és fontosságát mutatja, hogy a Magyar Pszichológiai Társaság XXIV. Országos Tudományos Nagygyűlése, amely 2015. májusában került megrendezésre, a Lélek-net a léleknek: Az ember a változó technikai közegek világában

címet viselte. A tudományos programbizottság tagjai és a résztvevők között pedig hazánk számos kiváló pszichológusa volt jelen, amely alapján túlzás nélkül állíthatjuk, az ember és az intelligens rendszerek kapcsolatának kutatása egy igazi „hot topic”.

Disszertációim elkészítésével nem csupán egy, a hazai közegben éppen kibontakozó félben lévő trendet kívántam megállapítani, hanem egy létező és gyakorlati jellegű problémára kívántunk refelektálni, mivel a dolgozat szerzője egy döntéstámogató rendszer felhasználójaként és operatív döntéshozóként nap, mint nap találkozik a dolgozatban felmerült kérdésekkel. Az általunk kínált megközelítésmódot a döntéshozók lezárás iránti igényéből kiindulva remélhetőleg hasznos adaléket nyújt mind a jövőbeli alapkutatásokhoz, mind pedig az alkalmazott kutatásokhoz. Természetesen hangsúlyozni kívánjuk, hogy eredményeinket más szervezeti keretek között is javasolt lenne ellenőrizni, amelyek fontos összehasonlítási alapot kínálnának a szakterület számára. Amennyiben szélesebb mintán is alátámasztást nyerme, hogy a lezárás iránti igény szintje hatással van a számítógépektől érkező döntések

66 A konferencia kivonatkötete elérhető az alábbi címen:
kiértékelésére, megfontolás tárgyát képezné, hogy a szervezetek a megfelelő munkaerő kiválasztása során figyelembe vegyék a zárt gondolkodás mértékét. Ez a véleményünk összecseng Kruglanski (2005:247) gondolataival, aki a következő szavakkal zárja könyvét:

„joggal merül fel a kérdés, hogy […] hogyan lehet maximalizálni a helyes döntési kimenetek valószínűségét.

Két olyan általános elv van, amelyek közül választani lehet. Az egyik lehetőség a döntési folyamat gépesítése; ennek során azonosítani kell az adott kontextusban potenciálisan releváns információforrásokat, majd pedig értékelni kell azok valószínűsíthető kvalitásait. Ezeket az értékeléseket a végső döntés meghozatala során az előzetesen megállapított minőségüknek megfelelő szüllyal kell figyelembe enni. Ennek végrehajtására egy számítógépes programot is lehet alkalmazni, amely hatékonyan kiszűri a döntési folyamatból az adott helyzet valamennyi motivációs tényezőjét (beleértve a lezárás iránti igényből fadaókat is). Az információk összegzésének ilyen gépesített módja (Meehl, 1956) nem garantálja a helyes eredményt (arról semmiféle döntési séma nem képes), de legalább biztosítja az ítélet és a stabil háttérismeretek konzisztenciáját, és védelmet biztosít a pillanatnyi motávcios és érzelmi jellegű pszichológiai pillapotok általánosságait.

A másik lehetőség – amelyet főként akkor kell követni, amikor a lehetséges információforrások nem azonosíthatóak – szerint biztosítható kell, hogy a döntéshozásra jogosultak (legyen az akár egyén, akár csoport) lezárás iránti igényének mértéke optimális legyen. Ezt például a megfelelő döntéshozó személyek kiválasztásával és kijelölésével lehet elérni…”

A döntéstámogató rendszerekhez fűződő kérdések az elmúlt időszakban ismét reflektorfénybe kerültek, mivel egyrészt a korábbi kutatások számos nyitott problémát hagytak maguk után, másrészt pedig a technológia fejlődéséből adódóan ezek az alkalmazások egyre több szervezetben bukkanak fel. Dolgozatunkban kísérletet tettünk arra vonatkozóan, hogy egy új aspektusból vizsgáljuk meg a témához kapcsolódó nehézségeket. Bízunk abban, hogy munkánk nem csupán Kruglanski elméletének egyébként igen szük számú hazai publikációs anyagát szaporítja, hanem érdemben hozzájárul ahhoz, hogy többet értsünk meg a döntéstámogató rendszerek és felhasználói bonyolult viszonyáról.

Online:

Kiss, P. (1999). A konzervativizmus pszichológiai és társadalmi kontextusban. Online elérhetőség:https://53bcd2cd-a-62cb3a1a-sites.googlegroups.com/site/kisspaszkal/ajfajok/Konzi.pdf?attachauth=ANoY7cqVetq4XfIvm4FvRSGqX1DvumBhNMLaG4af3_TY9wQnWw_Mpyiix17bxZ71JGoSSLr9ykZIMEee9eK74ZmsY2udLQj6yle8mK6o48H55p_rZ9y18yPMiyikhoUIRnfNBSifIRK_LaPeKoFTn_O9SyYJEdcczWrUTYA0JP_Hz4igX0iydeWkqXhYC6z7jYDM97heC
Légrádi Sz. (2012). Klinikai döntéstámogató rendszerek. Óbudai Egyetem, Neumann János Informatikai Kar. Internetes elérhetőség: http://users.nik.uni-obuda.hu/santane.edit/letoltesek/Hallgatoi%20esszek%202012/Klinikai%20d%C3%B6nnt%C3%A9st%C3%A1mog%C3%A9%C3%B3%20rendszerek.pdf (ultolsó megnyitás: 2015.10.30.)

Thomas, W. I., Znaniecki, F. (1918). The Polish peasant in Europe and America (Vol. 1), Boston.

Vári Anna (szerk., 1987). Kockázat és társadalom. Akadémiai Kiadó, Budapest

MELLÉKLETEK (KUTATÁSI KÉRDŐÍVEK)
Kedves Kolléga!

Köszönöm, hogy időt szán a Pécsi Tudományegyetem Pszichológiai Intézetében folyó kutatáshoz kapcsolódó kérdőívünk kitöltésére.

A következőkben az Ön által használt Pajzs elnevezésű döntéstámogató rendszerről és szakértőtársaival, kollégáival kapcsolatban teszünk fel kérdéseket.

Az alábbiakban egy kérdőívet talál, amely kitöltéséhez kb. 15-20 perc szükséges. Csak a teljesen kitöltött kérdőíveket tudjuk kézrevenni, ezért kérjük, ha ügy dönt, hogy segíti munkáinkat, akkor mindjen vegig az összes kérdésen.

Fontos tudnia, hogy a kérdőívek kitöltése teljesen önkéntes és anonim, a felhasználók utólagos beazonosítása nem lehetséges.

Amennyiben a kutatáshoz kapcsolatban hármany kérdése lenne, félrehati a kérdőív végén megadott telefonszámunk és e-mail címek!

Segítségét ezüton is nagyon köszönöm!

Tuséri Szabolcs tú. főigaz., kutatásvezető

A folytatáshez kérem, kattints a "Következő" gombra!
Kérdések:

1. Néma:
 ○ férfi
 ○ nő

2. Életkora:

3. Hány év gyakorlattal rendelkezik tűzoltási és műszaki mentési szakterületen? (vonzálós és/vagy híradó ügyeleti tapasztalat)

4. Hány hónapja használja a Pajzs rendszert?
 ○ nem használok
 ○ kevesebb, mint 1 hónapja
 ○ 1-3 hónapja
 ○ 4-6 hónapja
 ○ 7-11 hónapja
 ○ 12-24 hónapja

A következő részben 25 talajdonságpért talál. Összeg千里 egy olyan szakmaiag tapasztalt kollégájára, aki a megyei főügyfeleten telesseit szolgálatot, és legalább 10 év gyakorlattal rendelkezik a tűzoltás és műszaki mentés és/vagy az ügyeleti feladatok végrehajtása kapcsán. Lehetősen, hogy ez a kollégia nem a legszimpatikusabb munkatársa lesz. Kérlek, az alábbi talajdonságpárok segítségével jellemzőez ezt a személyt!

A folytatásához kérem, kattints a "Következő" gombra!

6. Az Ön szakértőtársa...

hatékony (-2) (-1) 0 (1) nem hatékony (2)
 ○ ○ ○ ○ ○

7. Az Ön szakértőtársa...

2/19
<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>megbízhatatlan</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>megbízható</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>(+2)</td>
</tr>
</tbody>
</table>

8. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>gyors (+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lassú</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

9. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>pontatlan (+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pontos</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

10. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>nem félrevezető (+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>félrevezető</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

11. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>alapos (+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>felületes</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

12. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>kiszámítható (+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kiszámíthatlan</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

13. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>rugalmatlan (+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rugalmas</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

14. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>együttműködő (+2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nem együttműködő</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
15. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th>ellenszépves (-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>szimpatikus (+2)</th>
</tr>
</thead>
</table>

16. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th>határozott (-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>határozatlan (+2)</th>
</tr>
</thead>
</table>

17. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th>ötlettelen (-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>kreatív (+2)</th>
</tr>
</thead>
</table>

18. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th>hátráltató (-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>segítő (+2)</th>
</tr>
</thead>
</table>

19. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th>idegeső (-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>megnyugtató (+2)</th>
</tr>
</thead>
</table>

20. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th>professzionális (-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>amatőr (+2)</th>
</tr>
</thead>
</table>

21. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th>"hideg" (-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>közvetlen (+2)</th>
</tr>
</thead>
</table>

22. Az Ön szakértőtársa...

<table>
<thead>
<tr>
<th>kellemetlen (-2)</th>
<th>(-1)</th>
<th>0</th>
<th>(+1)</th>
<th>kellemes (+2)</th>
</tr>
</thead>
</table>
23. Az Ön szakértőtársa...

egyhangű (-2) ○ (-1) ○ 0 ○ (+1) ○ sokszínű (+2) ○

24. Az Ön szakértőtársa...

fárasztó (-2) ○ (-1) ○ 0 ○ (+1) ○ élénkítő (+2) ○

25. Az Ön szakértőtársa...

nem megyőző (-2) ○ (-1) ○ 0 ○ (+1) ○ megyőző (+2) ○

Kérem, figyelmesen olvasson el minden egyes állítást az alábbiak közül, és döntsze el, hogy vélekedésére és tapasztalataira alapozva mennyire ért egyet az adott képletéssel.

A folytatáshoz kérem, kattintson a "Következő" gombra!

27. Véleményem szerint a világos szabályok és a rend a munkában elengedhetetlenek a sikerhez.

egyáltalán nem értek egyet (1) ○ (2) ○ (3) ○ (4) ○ (5) ○ teljesen egyetérték (6) ○

28. Még ha el is határozott magam valami mellett, mindig állig várom, hogy egy másfajta véleményt is fontolóra veszek.

egyáltalán nem értek egyet (1) ○ (2) ○ (3) ○ (4) ○ (5) ○ teljesen egyetérték (6) ○

29. Nem szemem az olyan helyzeteket, amelyek bizonytalanok.

egyáltalán nem értek egyet (1) ○ (2) ○ (3) ○ (4) ○ (5) ○ teljesen egyetérték (6) ○

30. Nem szemem az olyan kérdéseket, amiket meg lehet válaszolni sokféleképpen.

egyáltalán nem értek egyet (1) ○ (2) ○ (3) ○ (4) ○ (5) ○ teljesen egyetérték (6) ○
31. Szeretem, hogyha vannak kiszmíthatatlan barátain.

egyáltalán nem értek egyet (1) ☐ (2) ☐ (3) ☐ (4) ☐ (5) ☐ teljesen egyetértek (6) ☐

32. Úgy veszem észre, hogy a jól megszervezett élet rendszeres időbeosztással az alkotamnak megfelelő.

egyáltalán nem értek egyet (1) ☐ (2) ☐ (3) ☐ (4) ☐ (5) ☐ teljesen egyetértek (6) ☐

33. Elvezem azt a fajta bizonytalanságot, amikor belemegyek egy új helyzethe anélkül, hogy tudnám, mi fog történni.

egyáltalán nem értek egyet (1) ☐ (2) ☐ (3) ☐ (4) ☐ (5) ☐ teljesen egyetértek (6) ☐

34. Amikor nem utthon élekben, alyan helyekre csoportok menni, ahol már voltam korábban, és tudom, mi várva számíthatok.

egyáltalán nem értek egyet (1) ☐ (2) ☐ (3) ☐ (4) ☐ (5) ☐ teljesen egyetértek (6) ☐

35. Kényelmetlenül érzem magam, ha nem lá trom világosan, hogy valami miért következett be az életben.

egyáltalán nem értek egyet (1) ☐ (2) ☐ (3) ☐ (4) ☐ (5) ☐ teljesen egyetértek (6) ☐

36. Bosszant, amikor egy csoportban valaki nem érteni azzal, amivel a csoportba mindenki mással.

egyáltalán nem értek egyet (1) ☐ (2) ☐ (3) ☐ (4) ☐ (5) ☐ teljesen egyetértek (6) ☐

37. Utánoz az utolsó percben megváltoztatni a terveket.

egyáltalán nem értek egyet (1) ☐ (2) ☐ (3) ☐ (4) ☐ (5) ☐ teljesen egyetértek (6) ☐

38. Habozónak tartom magam.
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>39. Amikor vásárolni megyek, nehezenre esik pontosan eldönteni, mi az, amit akarok.</td>
<td>egyáltalán nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>teljesen egyetértek (6)</td>
</tr>
<tr>
<td>40. Amikor szemlélök egy problémával, általában nagyon gyorsan meglátom a legjobb megoldást.</td>
<td>egyáltalán nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>teljesen egyetértek (6)</td>
</tr>
<tr>
<td>41. Nagyon felzaklat, amikor egy fontos kérdésben nem látok ízt.</td>
<td>egyáltalán nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>teljesen egyetértek (6)</td>
</tr>
<tr>
<td>42. Hajlamos vagyok az utolsó lehetséges pillanatig elhalasztani fontos döntéseket megjósolatal.</td>
<td>egyáltalán nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>teljesen egyetértek (6)</td>
</tr>
<tr>
<td>43. A fontos döntéseket általában gyorsan és megahízatosan horom meg.</td>
<td>egyáltalán nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>teljesen egyetértek (6)</td>
</tr>
<tr>
<td>44. Sosem késtem el találkozónál vagy munkából.</td>
<td>egyáltalán nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>teljesen egyetértek (6)</td>
</tr>
<tr>
<td>45. Szerintem szórakoztató a tervelnet az utolsó pillanatban megválasztatni.</td>
<td>egyáltalán nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>teljesen egyetértek (6)</td>
</tr>
<tr>
<td>46. Általában nem szokta rendel tartani magasan körül.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>teljesen egyetértek (6)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>egyáltalan nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

47. A legtöbb társas konfliktusban könnyen észrevettem, melyik feléttek van igaza és melyik téved.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>teljesen egyetértek (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyáltalan nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

48. Nem ismertem még olyan embert, akik ne kedvente volna.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>teljesen egyetértek (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyáltalan nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

49. A legtöbb döntéssel sokat készkodtam.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>teljesen egyetértek (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyáltalan nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

50. Úgy vélem, a rendszeret és a szervezetség egy jó tanuló legszintsebb tulajdonságai közé tartoznak.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>teljesen egyetértek (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyáltalan nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

51. A legtöbb konfliktushelyzet mértékevé átalakítan átom, kogyan lehetne mindkét felnek igaza.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>teljesen egyetértek (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyáltalan nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

52. Nem szeretek olyan emberek társaságában lenni, akik hajlámosak váratlan cselekedetekre.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>teljesen egyetértek (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyáltalan nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

53. Lakább olyan emberekkel járok össze, akiket már jól ismerek, mert tudom, hogy tőlük mit várhatok.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>teljesen egyetértek (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyáltalan nem értek egyet (1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>
54. Szerintem a legjobban egy olyan órán tudnánk tanulni, ahol nincsenek világosan meghatározott célok és elvárások.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetérték (6)

55. Amikor egy problémáról gondolkodunk, annyi különböző véleményt fontolóra veszünk az egyben, amennyit csak lehetőleges.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetérték (6)

56. Nem szeretek beleemni egy helyzetbe anélkül, hogy tudnám mit várhatok tőle.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetérték (6)

57. Szeretem mindig tudni, hogy az emberek éppen mit gondolnak.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetérték (6)

58. Nem szeretem azt, amikor valaki olyasmit mond, amit többé teljesen lehet érteni.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetérték (6)

59. Bonszantó olyanvalakit hallgatni, akiknek nem látható világosan az álláspontja.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetérték (6)

60. Szeretek világos, rendezett életmódot folytatni.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetérték (6)

61. Az a tapasztalatom, hogy jobban tudom élvezni az életet, ha egy következetes rutint alakítok ki.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetérték (6)
62. Előnyben részesül az együttműködést azokkal az emberekkel, akiknek a véleménye nagyobb különbség a sajátomtól.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

63. Szeretem mindig eltervezni és rendben tartani a dolgaim.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

64. Kényelmetlenül érzem magam, ha valaki néhány gondolatát vagy szándékait konstrovolnak számonra.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

65. Azt hiszem, az embernek sosem kellene szabadidős tevékenységeket végeznie.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

66. Ha szembesülök egy problémával, mindig több lehetséges megoldást is látok rá.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

67. Amikor megpróbálunk megoldani egy problémát, gyakran olyan sok lehetséges választásra jutunk, hogy az már zavaró.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

68. Még ha rossz hírről is értesülünk, meggyőztetőbb számonra, mint bizonytalasságban maradni.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

69. Úgy érzem, nincs olyan, hogy jólhűségről tévedés.

egyáltalán nem értek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)
70. Általában nem kéri ki több különböző véleményt, mielőtt kialakításán a saját nézépontotat.

egyáltalan nem értetek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

71. Nem szeretem a váratlan helyzeteket.

egyáltalan nem értetek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

72. Soha nem szükséges meg más érzéseket.

egyáltalan nem értetek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

73. Nem szeretem a munkának (az alapanyag) azon részeit, amelyeket előnösen kell megvédeni a szerzett kapcsolatban.

egyáltalan nem értetek egyet (1) (2) (3) (4) (5) teljesen egyetértek (6)

Kérjük, az alábbi pontokat figyelembe elválassza és jelölje meg véleményét az egyes megállapításokkal kapcsolatban!

75. A Pázs rendering használata segíti a feladatok gyorsabb elvégzését.

egyáltalan nem értetek egyet (1) (2) (3) (4) (5) (6) teljesen egyetértek (7)

76. A Pázs rendering használata növeli a munkavégzés értékét.

egyáltalan nem értetek egyet (1) (2) (3) (4) (5) (6) teljesen egyetértek (7)

77. A Pázs rendering használata javítja a hatékonyságomat.

egyáltalan nem értetek egyet (1) (2) (3) (4) (5) (6) teljesen egyetértek (7)
78. A Pajzs rendszer hasznos a munkáiban.

<table>
<thead>
<tr>
<th>egyáltalán nem értet egyet</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>teljesen értet egyet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

79. A Pajzs rendszer használata világos és érthető.

<table>
<thead>
<tr>
<th>egyáltalán nem értet egyet</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>teljesen értet egyet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

80. A Pajzs rendszer használata nem kíván túl nagy szakmai erőfeszítést.

<table>
<thead>
<tr>
<th>egyáltalán nem értet egyet</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>teljesen értet egyet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

81. A Pajzs rendszert könnyű használni.

<table>
<thead>
<tr>
<th>egyáltalán nem értet egyet</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>teljesen értet egyet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

82. Nem okoz számomra nehézséget, hogy a Pajzs rendszer azt csinálja, amit akarok.

<table>
<thead>
<tr>
<th>egyáltalán nem értet egyet</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>teljesen értet egyet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

83. A Pajzs használata számomra egyáltalán nem igazsú.

<table>
<thead>
<tr>
<th>egyáltalán nem értet egyet</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>teljesen értet egyet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

84. Ha a Pajzsot kell használnom, az idegesége tesz.

<table>
<thead>
<tr>
<th>egyáltalán nem értet egyet</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>teljesen értet egyet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

85. A Pajzs használata számomra készületlen és nyugtaianító.

12/19
86. A Pajzs által elvégzett adatfeldolgozás minősége magas.

87. Nincs problémán azzal a minőséggel, amit a Pajzs nyújt.

88. A rendező által nyújtott eredményeket kivála a ertékelem.

89. Feltételezve, hogy hozzáféréssel rendelkezem a Pajzs rendszehez, a jövőben magamtol is használni fogom azt.

90. Tervezem, hogy amennyiben hozzáféréssel rendelkezem a Pajzs rendszehez, magamtol is használni fogom azt az előkelőző néhány kópóban.

Most már majdsem végigtenyek, csoport egyetlen feladat maradt hátra!
Kérjük, hogy a következő oldalon található 1., 2., 3. és 4. sorozatú feladatok közül válasszon egyet a kísérletvezető utasításának megfelelően!

A folytatáshoz kérem, kattints a "Következő" gombra!

92. Kérem, válasszon az alábbi feladatok közül egyet!
93. Esetleírás (1):
Olvassa el az alább leírást, majd határozza meg döntéstámogatás segítségével a riasztási fokozatot!

150

A bejelentő személytől meg tudja, hogy sokolilva, kossuth utca 10. szám alatt található Gyetványnévek Időseken. Otthonaban, a földszinti házak mellett kb. 20 méter távolságú helyszínből fekeze füstöt látottak a babaké nyílt ablakából. A bejelentő közölt, hogy mérsékelt dolgozik az intézetben, így tájékoztatja Önt, hogy jelen időpontban a személyzet és az ügyféltárgyak együttható azonosítása 80 fő tartózkodik a készülékes épületben, mely alatt pince is található.

Az otthonban 7 fő mozgásosrát láttak bennük összesen 95 kg mértékű fűszerrel az együttest, ahol a földszintes területen található. Elnézést szeretnénk megadni, hogy erős áramzás miatt néhányan esetleges érintettségeket kértek a világos, továbbá információkat visszahívása után állnak rendelkezésre.

Vonulási rend

<table>
<thead>
<tr>
<th>Riasztási fokozat</th>
<th>A raj megnevezése</th>
<th>Venulási távolság (km-ben)</th>
<th>Klérkezésre tervezett idő (perc-ben)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Betlés 1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>II.</td>
<td>Falva 1</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>III.</td>
<td>Község 1</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>IV.</td>
<td>Város 1</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>V.</td>
<td>Vízváros 1</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Község Létra</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Vízváros Létra</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Falva Víz</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Döntéstámogatás a szakértői á⻅ak részéről:

Ez a feladatot a mostani vizsgálat előtt megvitatottuk három előre kiválasztott és beavatott olyan kollegijának, akik az Ön szolgálati helyén frissítésből és működésről röviden található.

Mindhárom kollegija több mint 10 éves szakmai tapasztalattal rendelkezik a tiszta és műszaki mentesség érdekében és a hirdetési ügyelési feladatok területén. Ez a szakértői csoport a fenti esetre konszenzus alapján III. K. riasztási fokozatot javasolt.
A fenti javaslat ismeretében kérjük, határozza meg a riasztási fokozatot!

- El fogadnunk a kollegiáim javaslatát, és III. K. riasztási fokozatot határozz meg.
- Módosítom a kollegiám javaslatát, és I. riasztási fokozatot határozz meg.
- Módosítom a kollegiám javaslatát, és I. K. riasztási fokozatot határozz meg.
- Módosítom a kollegiám javaslatát, és II. riasztási fokozatot határozz meg.
- Módosítom a kollegiám javaslatát, és II. K. riasztási fokozatot határozz meg.
- Módosítom a kollegiám javaslatát, és III. riasztási fokozatot határozz meg.
- Módosítom a kollegiám javaslatát, és IV. riasztási fokozatot határozz meg.
64. Források (2):
Össze a legalkább beírást, majd határozza meg döntéstámogatás segítségével a riasztási fokozatot!
Szefferdalva településről telefonos segélyhívás érkezik a megyei űgyületre, és az eset kezelése Ötödik kerületi.
A bejelentett személytől megtudjuk, hogy Szefferdalva, Kossuth utca 10. szám alatt található
Állami felügyeletükön felül, hogy Szefferdalva, Kossuth utca 10. szám alatt található
Győrabban fődik az Ötödik kerületi, a földszinti ház mellett kb. 20 nm-es távoli helyiségből fénytől ütemezik a lakóház.
A bejelentett közül, hogy nincsenek dolgozók az intézetben, így tájékoztatja Ötödik kerületi, hogy jelen időpontban a személyzetet és a látogatókot együtt
az ötödik kerületi épületben, mely alatt pharazsok találhatók.
Az ötödik kerületi 7 fő megkereskedőt szereplő személyt kapnáik a földszintes kerületek
üléshelyezésre, azonban előfordulhat, hogy erős vizsgálat miatt néhányan az emeleti kezelésében
vannak. Az épület kb. 10065 m alapterületű, két bejáratot rendelkezik. A földszinten egy külön
épületben található gázkköz gondoskodik.
Mivel már kézel három perce bejelentés, haladékkalamul intézkedés kell a riasztásról, további
információk már csak a bejelentő későbbi vizsgálóba után állnak rendelkezésre.

Venulási rend

<table>
<thead>
<tr>
<th>Riasztási fokozat</th>
<th>A raj megnevezése</th>
<th>Vonalas távolsága (km-ben)</th>
<th>Kérülésére tervezett idő (perchen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Helyseg I</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>I.</td>
<td>Falva I</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>II.</td>
<td>Község I</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>III.</td>
<td>Város I</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>III.</td>
<td>Megye I</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td>IV.</td>
<td>Ország I</td>
<td>46</td>
<td>55</td>
</tr>
<tr>
<td>V.</td>
<td>Kőföld I</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Község Létra</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Város Létra</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Falva Víz</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Döntéstámogatás a Pajzs rendszer segítségével:
A kéresetet korábban leírtunk a Pajzs programra, amely az analízis után III. K. riasztási
fokozatot javasolt.
A feladatot helyezt természetesen valóságos települést adtunk meg a program számára, amely
esetében a vonulási távolságok megegyeznek a fentiakkel.
A fenti javaslatt ismeretében kérjük, határozza meg a riasztási fokozatot!
Módozom a Pajcs rendszer javaslatát, és V. K. riasztási fokozatot határozzok meg.

95. Esetleírás (3):
Ohassa el az alább leírást, majd határozza meg DÖNTÉSÉG TÖBB EMLÉKÜL. A riasztási fokozatot!
Szhollalva településről telefonos segélyhívás érkezik a megelőző ügyvédelre, és az eset kezelése
Ököz kerül.
A bejelentő személytől megtudja, hogy Szhollalva, Kassuth utca 10. szám alatt található
Gyémántévek idején Otthonban, a földszinti halók mellett kb. 20 mm-es tároló helységből fekete
füstöt láttnak felállítani a bukóra nyitott ablakból. A bejelentő kéri, hogy megerősíti dolgozzak
anélkülben, hogy jelen időpontban a személyzetet és a lakatolókkal együtt
maximális fő tartózkodik a kétáruhás épületben, mely alatt pince is található.
Az otthonban 7 fő mezőgazdasági bontakó személyt építenek, akik a földszinten kerekültek
elhelyezésre, amennyire előfordulhat, hogy orvosi vizsgálat miatt néhányan az emeleti közelben
vanak. Az épület kb. 10x35 m alapterületű, két bejáratnál rendelkezik. A főbejárat egy külön
épületben található főszakán gondoskodik.
Mivel már közel három percce beszéltnek, haladéktalanul intézkednie kell a riasztásról, további
információk már csak a bejelentő későbbi vizsgálóvága után állnak rendelkezésre.
Venulási rend

<table>
<thead>
<tr>
<th>Riasztás fokozat A raj megnevezése</th>
<th>Venulás távolsága (km-ben)</th>
<th>kiértékelésre tervezett idő (percben)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Hehég 1</td>
<td>1</td>
</tr>
<tr>
<td>I.</td>
<td>Falva 1</td>
<td>10</td>
</tr>
<tr>
<td>II.</td>
<td>Község 1</td>
<td>15</td>
</tr>
<tr>
<td>III.</td>
<td>Város 1</td>
<td>40</td>
</tr>
<tr>
<td>III.</td>
<td>Megye 1</td>
<td>41</td>
</tr>
<tr>
<td>IV.</td>
<td>Ország 1</td>
<td>46</td>
</tr>
<tr>
<td>V.</td>
<td>Külföld 1</td>
<td>53</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Község Létra</td>
<td>15</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Város Létra</td>
<td>40</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Falva Víz</td>
<td>10</td>
</tr>
</tbody>
</table>

Kérjük, az alábbiakban az eddigi szakmai tapasztalatai alapján, a Pajcs rendszer és
colloquium SEGÉTLOG NELKÜL, határozza meg az esetekhez tartozó riasztási fokozatot! Csak
és kizárólag az Ön véleménye számít, döntéseit senki nem fogja megismerni és
véleményezni. NAGYON FONTOS, HOGY ÖNÁLLODÁN DÖNTSGÉN!

Kérjen, adja meg az Ön által javasolt riasztási fokozatot!
96. Döntéstámogatás a szakértőtársak részéről:
Ez a feladatot a mostani vizsgálat előtt megmutattuk három előre kiválasztott és beavatott olyan
kollégájának, akik az Ön szolgálati helyén főfoglavételeként és műveletirányítóként dolgoznak.
Mindhárom kollégája több mint 10 éves szakmai tapasztalattal rendelkezik a tűzoltás és műszaki
menet és/vagy a hirdő ügyeleti feladatok területén.
Ez a szakértői csoport a feltételekre kész munkaszervezés alapján III. K. riasztási fokozatot javasolt.
A tevékenység bevezetése kérem, gondolja át előző döntését, és írja határozat meg az
esetre tartozó riasztási fokozatot! (Természetesen nem kötelező megváltoztatni korábbi döntést,
ha továbbra is fennáll a megfelelő lehetőség.)

○ Elfordom a kollégám javaslatát, és III. K. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és I. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és I. K. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és II. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és II. K. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és III. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és IV. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és IV. K. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és V. riasztási fokozatot határozhatsz meg.
○ Módsértom a kollégám javaslatát, és V. K. riasztási fokozatot határozhatsz meg.
97. Eselleírás (I):
Olvasd el az alábbi leírást, majd határozza DÖNTÉSTAMOGATÁS NÉLKÜL a riasztási fokozatot!
Seholfalva településről telefonos segélykivívás érkezik a megyei főügyésztőre, és az eset kezelése
Önhöz kerül.
A bejelentő személytől megtudja, hogy Seholfalva, Kossath utca 10. szám alatt található
Gyémántévek időseik. Otthonukban, a földszinti háló melletti kb. 20 mm-es tároló helyiségből felvett
füstöt látnak felszállni a bukóra nyitott ablakból. A bejelentő kijelenti, hogy zöldre került dolgozni az
ügyében, úgy tájékoztatja őt, hogy jelen időpontban a személyzet és a lakófogással együtt
maximális 80 fő tartozékodik a készítmény épületében, mely alatt pince is található.
Az otthonban 7 fős családot tartottak be, amikor személytől érkezett a háló, aki a földszinti kerültek
elhelyezésére, azonban előfordulhat, hogy orvosi vizsgálat miatt néhányan az edetéi kerülőben
vanak. Az épület kb. 10-15 m alapterületű, két bejárattal rendelkezik. A főterem egy külön
épületben található gázházain gondoskodik.
Mivel már kész háló pince becsúszik, haladással a menedékeket kell a riasztásról, további
információk már csak a bejelentő későbbi vizsgálatára után állnak rendelkezésére.

Vomulási rend

<table>
<thead>
<tr>
<th>Riasztási fokozat</th>
<th>A raj megnevezése</th>
<th>Vomulás távolsága (km-ban)</th>
<th>Kijelkezésre tervezett idő (perc-ben)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Holység I</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>I.</td>
<td>Falva I</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>II.</td>
<td>Község I</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>III.</td>
<td>Város I</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>III.</td>
<td>Megye I</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>IV.</td>
<td>Ország I</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>V.</td>
<td>Külföld I</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Község Létra</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Város Létra</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>Kiemelt</td>
<td>Falva Víz</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Kérjük, az alábbiakban az eddigi szakmai tapasztalatai alapján, a Pajzs rendszer és
kollégáját SEGÉSZÉGE NÉLKÜL határozza meg az esetéhez tartozó riasztási fokozatot! Csak
és kizárólag az Ön véleménye számát, döntést senki nem fogja megismerni és
véleményezni. NAGYON FONTOS, HOGY ÖNÁLLÓAN DÖNTSÖN!
Kérjük, adja meg az Ön által javasolt riasztási fokozatot!

- I.
- I. K.
- II.
- II. K.
- III.
- III. K.
- IV.
- IV. K.
- V.
- V. K.
98. Döntéstámogatás a Pajzs rendszer segítségével:
A kísérletet korábban felvittük a Pajzs programba, amely az analízis után III. K. riasztási fokozatot javasolt.
"Seholhalva" helyett természetesen valóságos települést adtunk meg a program számára, amely esetében a vonulási távolságok megegyeznek a korábban ismertetett adatokkal.

A fenti információ ismeretében kérem, gondolja át elégedett döntését, és ismét határozza meg az esetekhez tartozó riasztási fokozatot! (Természetesen nem kötelező megváltoztatnia korábbi döntését, ha továbbra is fenntartja, erősítve meg úgy, hogy kiválasztja a megfelelő hibásdolgozást!)

○ Elfogadom a Pajzs rendszer javaslatát, és III. K. riasztási fokozatot határozzuk meg.
○ Módosítom a Pajzs rendszer javaslatát, és I. riasztási fokozatot határozzuk meg.
○ Módosítom a Pajzs rendszer javaslatát, és I. K. riasztási fokozatot határozzuk meg.
○ Módosítom a Pajzs rendszer javaslatát, és II. riasztási fokozatot határozzuk meg.
○ Módosítom a Pajzs rendszer javaslatát, és II. K. riasztási fokozatot határozzuk meg.
○ Módosítom a Pajzs rendszer javaslatát, és III. riasztási fokozatot határozzuk meg.
○ Módosítom a Pajzs rendszer javaslatát, és IV. riasztási fokozatot határozzuk meg.
○ Módosítom a Pajzs rendszer javaslatát, és V. riasztási fokozatot határozzuk meg.

A vizsgálat befejeződött!
Az adatok elküldéséhez kérem, kattintson a "Következő" gombra!

Köszönöm, hogy kitöltött kérdőívünket! Kérjük, küldje el az adatot!

Amennyiben bármilyen jellegű kérdése lenne a kutatási kapcsolatban, keresse e-mailben vagy telefonon!

Köszönnetek, Tusori Szabelcs tá. fiókjá, kutatásvezető

e-mail: tusori@gmail.com

telefon: 06-20/530-4379